GT et PÉC de l'équipe Combinatoire et Interactions

La petite école et le séminaire de l'équipe Combinatoire et Interactions (CI) ont lieu les lundis. Les horaires sont de de 9h30 à 10h30 pour la PÉC et de 10h45 à 11h45 pour le GT. Ils ont lieu dans la salle 076 au rez-de-chaussée du LaBRI (bâtiment A30).
Lorsque l'exposé est filmé il est retransmis via zoom
https://u-bordeaux-fr.zoom.us/j/83326403471?pwd=VLapX1qCOgASs3V8OktWtKEr8dn041.1
Meeting ID: 833 2640 3471
Passcode: 1251442
Contactez les responsables (Vincent Delecroix, Oscar Fontaine et Juliette Schabanel) si vous voulez proposer un exposé ou recevoir les annonces de la PÉC ou du GT.
Pour l'historique des exposés précédents, voir le menu "GT CI" à droite de la page.


2025-2026


Lundi 15 septembre : Ludovic Morin

Title : The magic triangle & other stories

Summary : Let P_K(n,m) be the probability that the convex hull of n+m points drawn uniformly and independently in a convex set K of area 1 (in the plane) has exactly n vertices.
Initial works on this quantity go back to the end of the 19th century and Sylvester's four points problem that focuses on the set K that optimizes the probability P_K(4,0). It was solved by Blaschke in 1917, and since then, more general results have followed for P_K(n,0) when K is a parallelogram, a triangle or a circle, as well as other asymptotic results.
In particular, an important work of 2000 by Bárány et al. gives the exact probability that n i.i.d. uniform points in a triangle abc form a convex chain between a and b (\ie the n points are on the boundary of the convex hull of these n points together with a and b). Furthermore, the limit of such a convex chain as n\to+\infty is the parabola joining a to b that is tangent to both ac and cb.
In the first part of this presentation, after introducing this tool and its properties, I'll try to demonstrate how it relates to P_K(n,0).
In the second part of the talk, I will study a generalized version of this magic triangle : n+m uniform points are drawn in abc and we look at the probability that exactly n points among the n+m are on the boundary of the convex hull of these points together with a and b.
We give asymptotics of the probability of such an event and formulate convergence theorems for this convex hull for special values of m. Based on these recent results, we'll conclude this talk with a few conjectures on the study of P_K(n,m).
Joint work with Jean-François Marckert.

Lundi 22 septembre : Loïc Dubois

Title: Algorithms for Topological and Metric Surfaces

Abstract: I will present the results of my thesis: algorithms for geometric and topological problems.
In a first part, we consider the problem of untangling graphs on surfaces: given a drawing of a graph on a surface, possibly with crossings, remove all crossings by deforming the drawing continuously, or correctly assert that this is not possible. We give the first polynomial time algorithms for this problem. To do so we introduce a new kind of triangulations of surfaces that discretize negative-curvature surfaces in a better way than the state of the art. On these triangulations, we provide a combinatorial analog of the celebrated barycentric embeddings of Tutte.
In a more geometric setting, we give a new efficient algorithm for computing a Delaunay triangulation of an abstract piecewise-flat surface (a generalization of meshes). We also study the classical Delaunay flip algorithm, and prove, when the surface is a flat torus, the first worst-case bound that is tight up to a constant factor. On hyperbolic surfaces, we provide an implementation of the Delaunay flip algorithm, collected in a package of the standard library of computational geometry CGAL, along with convenient generation and visualization tools.

Lundi 29 septembre: à saisir

Lundi 6 octobre: Arnaud de Mesmay

Lundi 13 octobre: à saisir

Lundi 20 octobre: soutenance de thèse de Zoé Varin à 10h

Lundi 27 octobre: vacances universitaires Toussaint

Lundi 3 novembre: à saisir

Lundi 10 novembre: Andrew Elvey-Price

Lundi 17 novembre: à saisir

Lundi 24 novembre: Alice Contat

Lundi 1 décembre: à saisir

Lundi 8 décembre: à saisir

Lundi 15 décembre: à saisir

Lundi 22 décembre: vacances universitaires Noël

Lundi 29 décembre: vacances universitaires Noël


Français English

Groupe

Événements

GT CI

* Années précédentes

Ressources

edit SideBar