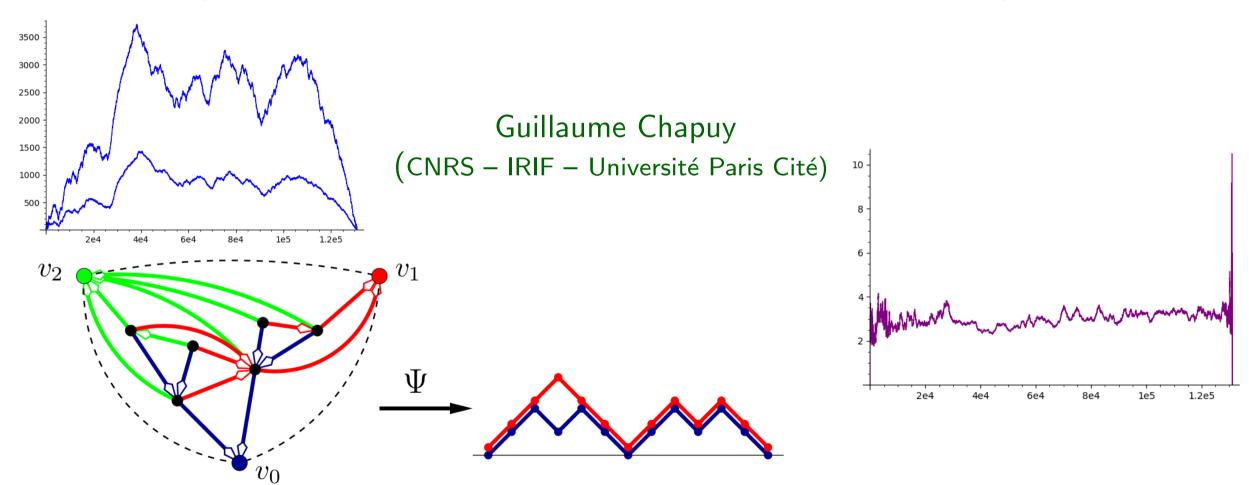
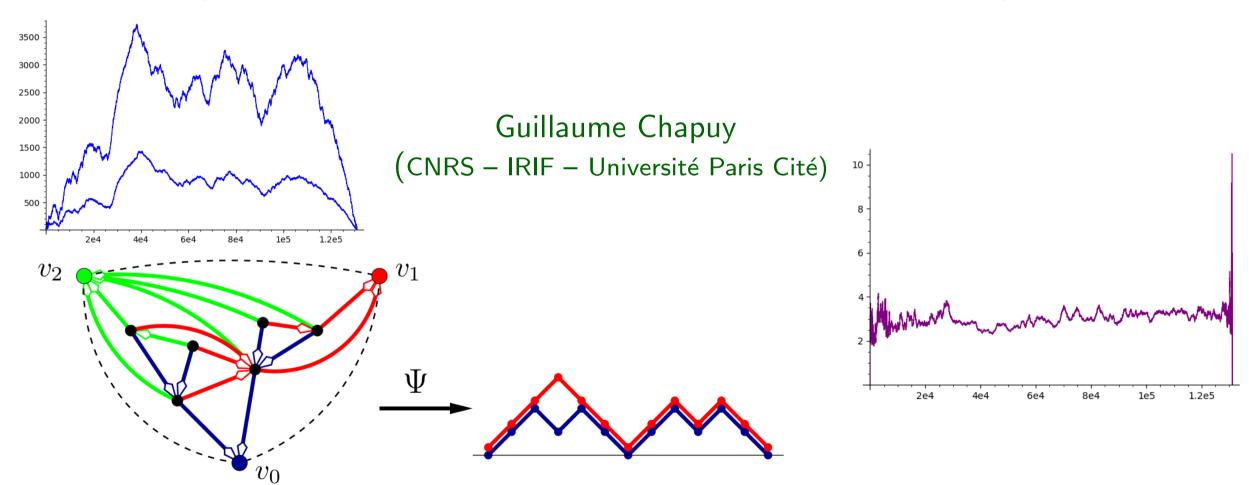
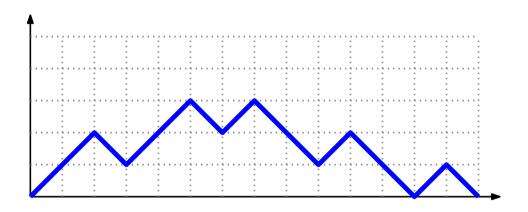
Sur la normalisation des intervalles de Tamari aléatoires et des bois de Schnyder des triangulations aléatoires (avec une astuce D-finie asymptotique)



Sur la normalisation des intervalles de Tamari aléatoires et des bois de Schnyder des triangulations aléatoires (avec une astuce D-finie asymptotique)

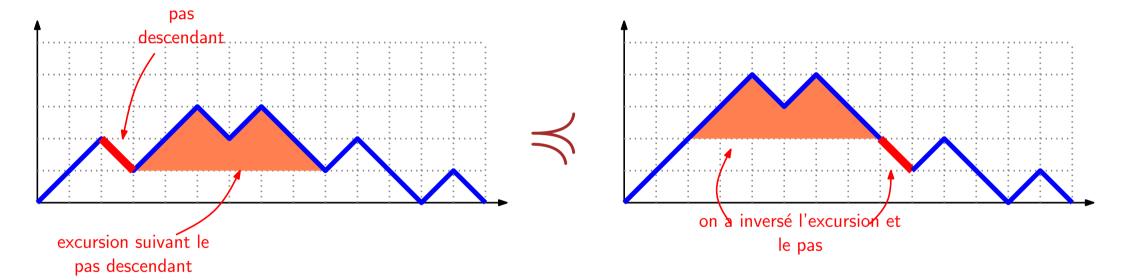


• Chemin de Dyck: pas ± 1 , va de 0 à 0, reste ≥ 0 , longueur: 2n.



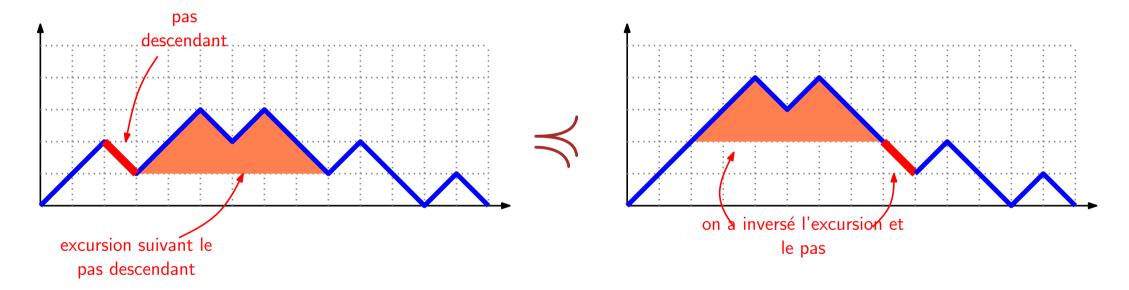
• Chemin de Dyck: pas ± 1 , va de 0 à 0, reste ≥ 0 , longueur: 2n.

• Relation d'ordre de Tamari:

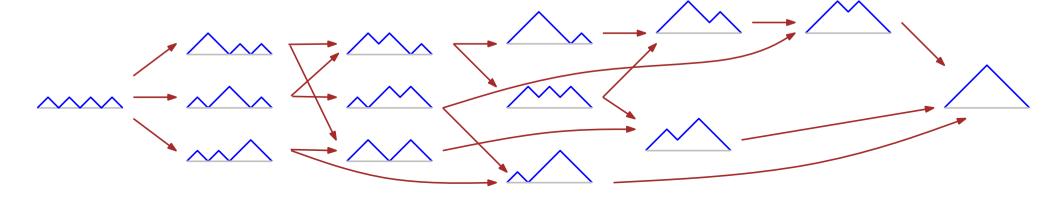


• Chemin de Dyck: pas ± 1 , va de 0 à 0, reste ≥ 0 , longueur: 2n.

• Relation d'ordre de Tamari:

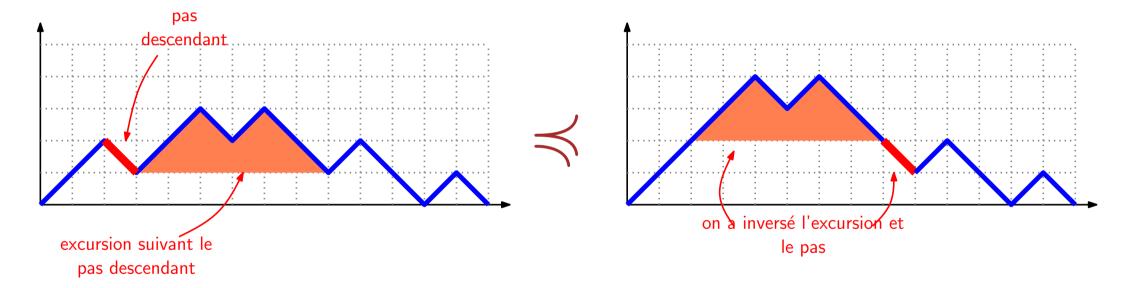


• C'est le fameux ordre de Tamari

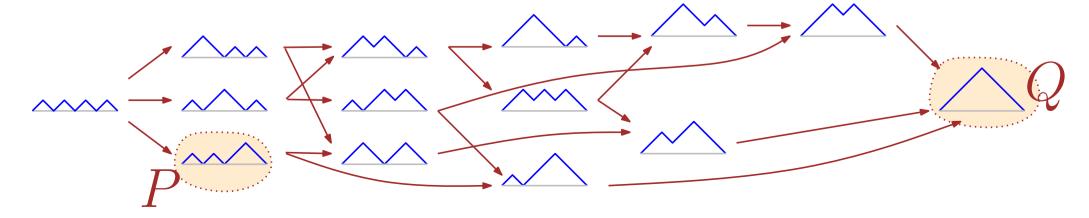


• Chemin de Dyck: pas ± 1 , va de 0 à 0, reste ≥ 0 , longueur: 2n.

• Relation d'ordre de Tamari:

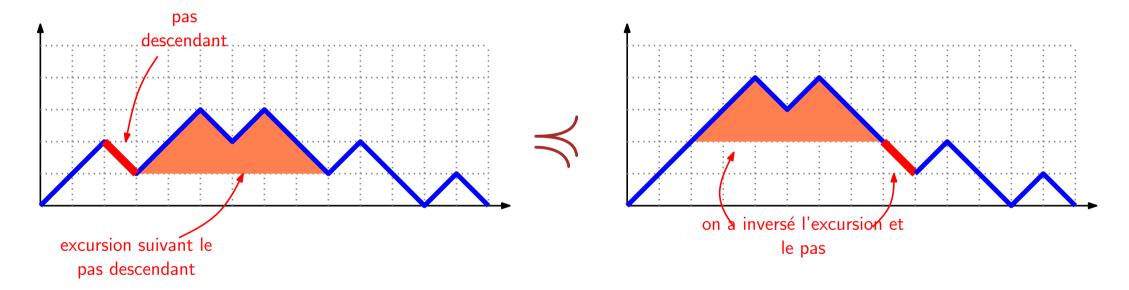


• C'est le fameux ordre de Tamari

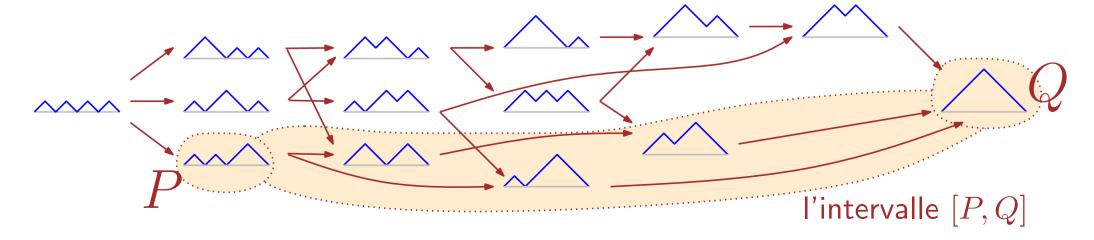


• Chemin de Dyck: pas ± 1 , va de 0 à 0, reste ≥ 0 , longueur: 2n.

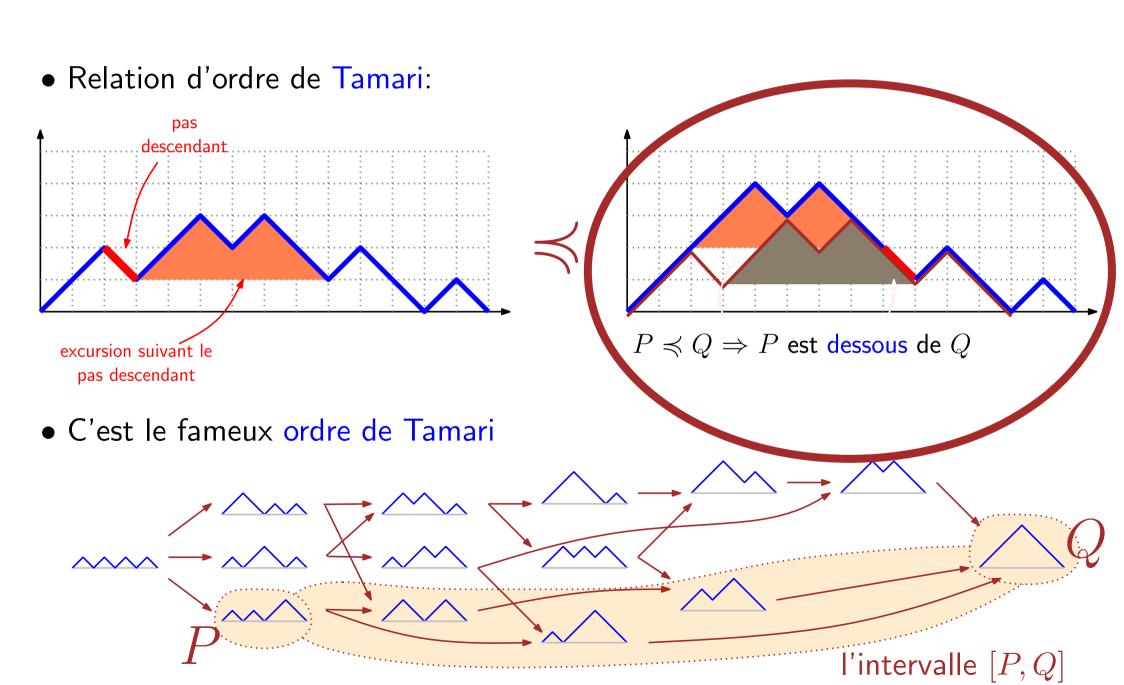
• Relation d'ordre de Tamari:



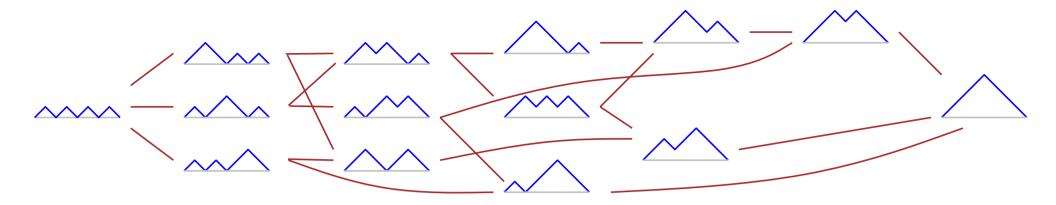
• C'est le fameux ordre de Tamari



• Chemin de Dyck: pas ± 1 , va de 0 à 0, reste ≥ 0 , longueur: 2n.



Chemins de Dyck et treillis de Tamari - (parenthèse)



- Graphe à Cat(n) sommets
- Le temps de mélange de la marche aléatoire simple est inconnu! (conjecture $O(n^{3/2})$ Aldous 1990's)
- Le diamètre est 2n o(n) [Sleator-Thurston-Tarjan, Pournin], connections mystérieuses avec la géométrie hyperbolique!

Énumération d'intervalles

• [Chapoton 06] Le nombre de paires [P,Q] telles que $P \leq Q$ est:

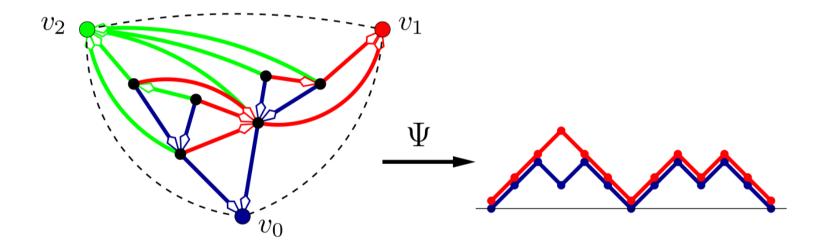
$$I_n = \frac{2}{n(n+1)} \binom{4n+1}{n-1}.$$

Énumération d'intervalles

• [Chapoton 06] Le nombre de paires [P,Q] telles que $P \preccurlyeq Q$ est:

$$I_n = \frac{2}{n(n+1)} \binom{4n+1}{n-1}.$$

ullet ... c'est joli. C'est aussi le nombre de triangulations planaires 3-connexes à n+2 sommets [Tutte 62, Bernardi-Bonichon 09]. La bijection de Bernardi-Bonichon passe par les bois de Schnyder des triangulations:

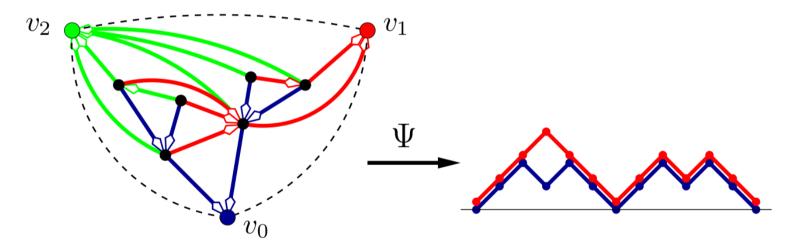


Énumération d'intervalles

• [Chapoton 06] Le nombre de paires [P,Q] telles que $P \preccurlyeq Q$ est:

$$I_n = \frac{2}{n(n+1)} \binom{4n+1}{n-1}.$$

• ... c'est joli. C'est aussi le nombre de triangulations planaires 3-connexes à n+2 sommets [Tutte 62, Bernardi-Bonichon 09]. La bijection de Bernardi-Bonichon passe par les bois de Schnyder des triangulations:



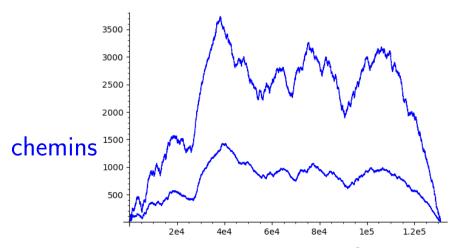
• Ce n'est que le début de riches analogies entre intervalles de Tamari et cartes... voir travaux de [Fang] et collaborateurices. Et aussi [MBM-GC-LFPR]

$$(n+1)^{l-2} \prod_{i=1}^{\ell(\lambda)} \binom{2\lambda_i}{\lambda_i} \quad \text{vs} \quad 2(n-1)_{\ell(\lambda)-2} \prod_{i=1}^{\ell(\lambda)} \binom{2\lambda_i-1}{\lambda_i}$$

• Théorème [C'24]. Soit (P_n,Q_n) un intervalle de Tamari aléatoire choisi uniformément dans \mathcal{I}_n . Soit $I\in[0,2n]$ une absisse choisie uniformément. Alors:

$$\frac{Q_n(I)}{n^{3/4}} \longrightarrow Z , \quad \mathbf{E}[Z^k] = \frac{\sqrt{3} \cdot 2^{-\frac{k}{4}-1}}{\sqrt{\pi}} \frac{\Gamma(\frac{1}{4}k + \frac{1}{3})\Gamma(\frac{1}{4}k + \frac{2}{3})}{\Gamma(\frac{1}{4}k + \frac{1}{2})}.$$

Note: $Z = (XY)^{1/4}$ où $X \sim \beta(\frac{1}{3}, \frac{1}{6})$ et $Y \sim \Gamma(\frac{2}{3}, \frac{1}{2})$.



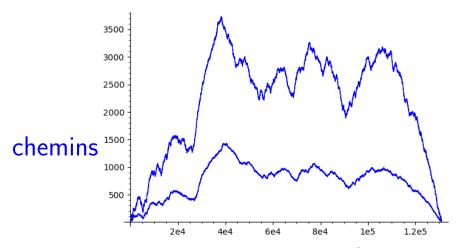
Simulations: Wenjie Fang.

• Théorème [C'24]. Soit (P_n, Q_n) un intervalle de Tamari aléatoire choisi uniformément dans \mathcal{I}_n . Soit $I \in [0, 2n]$ une absisse choisie uniformément. Alors:

$$\frac{Q_n(I)}{n^{3/4}} \longrightarrow Z , \quad \mathbf{E}[Z^k] = \frac{\sqrt{3} \cdot 2^{-\frac{k}{4}-1}}{\sqrt{\pi}} \frac{\Gamma(\frac{1}{4}k + \frac{1}{3})\Gamma(\frac{1}{4}k + \frac{2}{3})}{\Gamma(\frac{1}{4}k + \frac{1}{2})}.$$

Note: $Z = (XY)^{1/4}$ où $X \sim \beta(\frac{1}{3}, \frac{1}{6})$ et $Y \sim \Gamma(\frac{2}{3}, \frac{1}{2})$.

De plus: $\frac{P_n(I)}{n^{3/4}} \longrightarrow \frac{Z}{3}$



Simulations: Wenjie Fang.

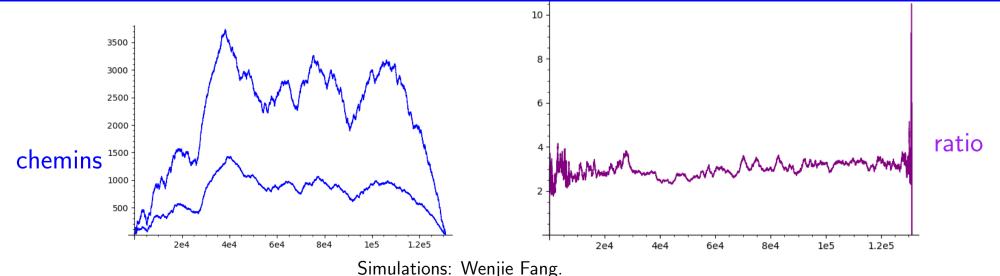
• Théorème [C'24]. Soit (P_n,Q_n) un intervalle de Tamari aléatoire choisi uniformément dans \mathcal{I}_n . Soit $I\in[0,2n]$ une absisse choisie uniformément. Alors:

$$\frac{Q_n(I)}{n^{3/4}} \longrightarrow Z , \quad \mathbf{E}[Z^k] = \frac{\sqrt{3} \cdot 2^{-\frac{k}{4}-1}}{\sqrt{\pi}} \frac{\Gamma(\frac{1}{4}k + \frac{1}{3})\Gamma(\frac{1}{4}k + \frac{2}{3})}{\Gamma(\frac{1}{4}k + \frac{1}{2})}.$$

Note: $Z = (XY)^{1/4}$ où $X \sim \beta(\frac{1}{3}, \frac{1}{6})$ et $Y \sim \Gamma(\frac{2}{3}, \frac{1}{2})$.

De plus: $\frac{P_n(I)}{n^{3/4}} \longrightarrow \frac{Z}{3}$.

• Théorème [C'24]. On a $rac{Q_n(J)-3P_n(J)}{\sqrt{n}}=O_p(1)$ Et donc $ilde{P}_n(J)=\left(rac{1}{3}+o(1)
ight) ilde{Q}_n(J).$



• Théorème [C'24]. Soit (P_n,Q_n) un intervalle de Tamari aléatoire choisi uniformément dans \mathcal{I}_n . Soit $I\in[0,2n]$ une absisse choisie uniformément. Alors:

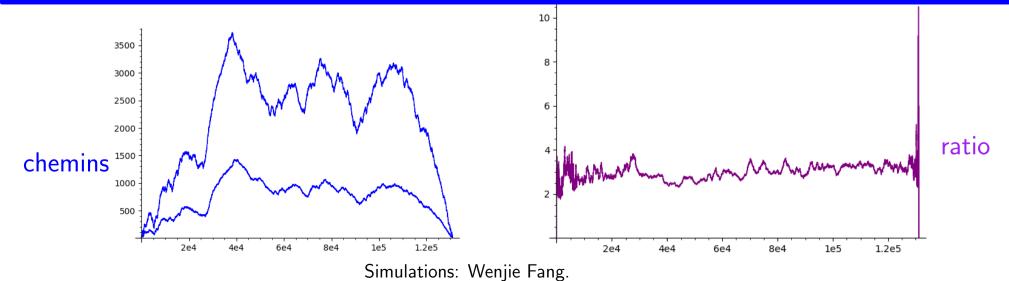
$$\frac{Q_n(I)}{n^{3/4}} \longrightarrow Z , \quad \mathbf{E}[Z^k] = \frac{\sqrt{3} \cdot 2^{-\frac{k}{4}-1}}{\sqrt{\pi}} \frac{\Gamma(\frac{1}{4}k + \frac{1}{3})\Gamma(\frac{1}{4}k + \frac{2}{3})}{\Gamma(\frac{1}{4}k + \frac{1}{2})}.$$

Note: $Z = (XY)^{1/4}$ où $X \sim \beta(\frac{1}{3}, \frac{1}{6})$ et $Y \sim \Gamma(\frac{2}{3}, \frac{1}{2})$.

De plus:
$$\frac{P_n(I)}{n^{3/4}} \longrightarrow \frac{Z}{3}$$
.

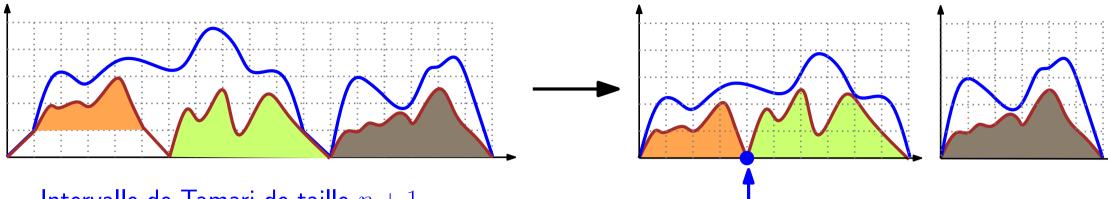
donne la hauteur des points typique dans le Schnyder wood canonique d'une triangulation plane aléatoire! (nouveau !)

• Théorème [C'24]. On a $rac{Q_n(J)-3P_n(J)}{\sqrt{n}}=O_p(1)$ Et donc $ilde{P}_n(J)=\left(rac{1}{3}+o(1)
ight) ilde{Q}_n(J).$



Énumération (classique) des intervalles de Tamari

[[MBM + Éric Fusy + LFPR]]



Intervalle de Tamari de taille n+1

Intervalle de Tamari avec un zéro du chemin bas pointé Intervalle de Tamari

Série des intervalles:

 $F(t; \mathbf{x})$

t: taille

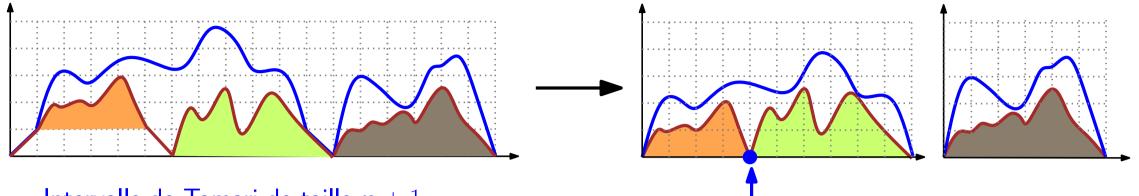
x: nombre de zéros du chemin du bas

$$F(t; \mathbf{x}) =: \sum_{i \geq 0} F_i(t) \mathbf{x}^i$$

taille totale n

Énumération (classique) des intervalles de Tamari

[[MBM + Éric Fusy + LFPR]]



Intervalle de Tamari de taille n+1

Intervalle de Tamari avec un zéro du chemin bas pointé

taille totale n

Intervalle de Tamari

Série des intervalles:

$$F(t; \mathbf{x}) = \mathbf{x} + t \sum_{i>1} F_i(t) \left(\mathbf{x} + \mathbf{x}^2 + \dots + \mathbf{x}^i \right) F(t, \mathbf{x})$$

t: taille

x: nombre de zéros du chemin du bas

$$F(t; \mathbf{x}) =: \sum_{i \geq 0} F_i(t) \mathbf{x}^i$$

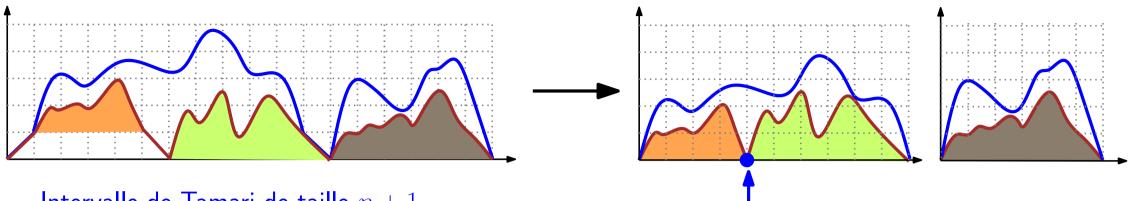
$$= x + tx \sum_{i>1} F_i(t) \frac{x^i - 1}{x - 1} F(t, x)$$

$$= x + tx \frac{F(t,x) - F(t,1)}{x-1} F(t,x)$$

ullet Équation polynomiale à une variable catalytique. Théorie effective de Bousquet-Mélou-Jehanne, la solution est explicite o thm de Chapoton sur l'énumération.

Enumération (classique) des intervalles de Tamari

[[MBM + Éric Fusy + LFPR]]



Intervalle de Tamari de taille n+1

Intervalle de Tamari avec un zéro du chemin bas pointé

taille totale n

Intervalle de Tamari

Série des intervalles:

t: taille

x: nombre de zér chemin du bas

$$F(t; \mathbf{x}) =: \sum_{i \ge 0} F_i$$

$$F(x) = \frac{1+u}{(1+zu)(1-z)^3}(1-2z-z^2u) \quad , \quad F(1) = \frac{1-2z}{(1-z)^3}$$

$$t = z(1-z)^{3},$$
$$x = \frac{1+u}{(1+zu)^{2}}.$$

• Équation polynomiale à une variable catalytique. Théorie effective de Bousquet-Mélou-Jehanne, la solution est explicite \rightarrow thm de Chapoton sur l'énumération.

H(x;t,s) série des intervalles avec un point marqué

$$H(x) \equiv H(t, x, s) := \sum_{n \ge 0} t^n \sum_{(P,Q) \in \mathcal{I}_n} x^{\operatorname{contact}(P)} \sum_{i=0}^{2n} s^{Q(i)}.$$

t: taille

x: nombre de zéros du chemin du bas

s: hauteur du chemin du haut au point marqué.

H(x;t,s) série des intervalles avec un point marqué

t: taille

$$H(x) \equiv H(t, x, s) := \sum_{n \ge 0} t^n \sum_{(P,Q) \in \mathcal{I}_n} x^{\operatorname{contact}(P)} \sum_{i=0}^{2n} s^{Q(i)}.$$

x: nombre de zéros du chemin du bas

s: hauteur du chemin du haut au point marqué.

On écrit trivialement une équation pour H en pointant la décomposition précédente:

$$H(x) = F(x) + sxt \frac{H(x) - H(1)}{x - 1} F(x) + xt \frac{F(x) - F(1)}{x - 1} H(x).$$

H(x;t,s) série des intervalles avec un point marqué

$$H(x) \equiv H(t, x, s) := \sum_{n \ge 0} t^n \sum_{(P,Q) \in \mathcal{I}_n} x^{\operatorname{contact}(P)} \sum_{i=0}^{2n} s^{Q(i)}.$$

t: taille

x: nombre de zéros du chemin du bas

s: hauteur du chemin du haut au point marqué.

On écrit trivialement une équation pour H en pointant la décomposition précédente:

$$H(x) = F(x) + sxt \frac{H(x) - H(1)}{x - 1} F(x) + xt \frac{F(x) - F(1)}{x - 1} H(x).$$
Intervalle de Tamari de taille $n + 1$

Intervalle de Tamari de taille n+1

Intervalle de Tamari avec un zéro du chemin bas pointé Intervalle de Tamari

H(x;t,s) série des intervalles avec un point marqué

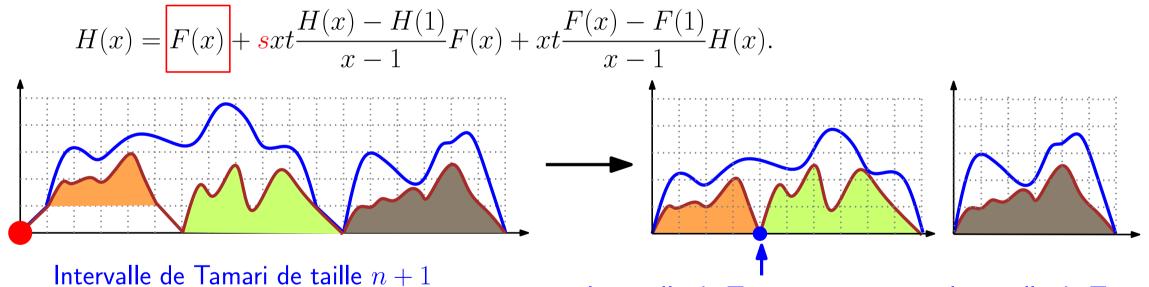
$$H(x) \equiv H(t, x, s) := \sum_{n \ge 0} t^n \sum_{(P,Q) \in \mathcal{I}_n} x^{\operatorname{contact}(P)} \sum_{i=0}^{2n} s^{Q(i)}.$$

t: taille

x: nombre de zéros du chemin du bas

s: hauteur du chemin du haut au point marqué.

On écrit trivialement une équation pour H en pointant la décomposition précédente:



Intervalle de Tamari avec un zéro du chemin bas pointé

Intervalle de Tamari

H(x;t,s) série des intervalles avec un point marqué

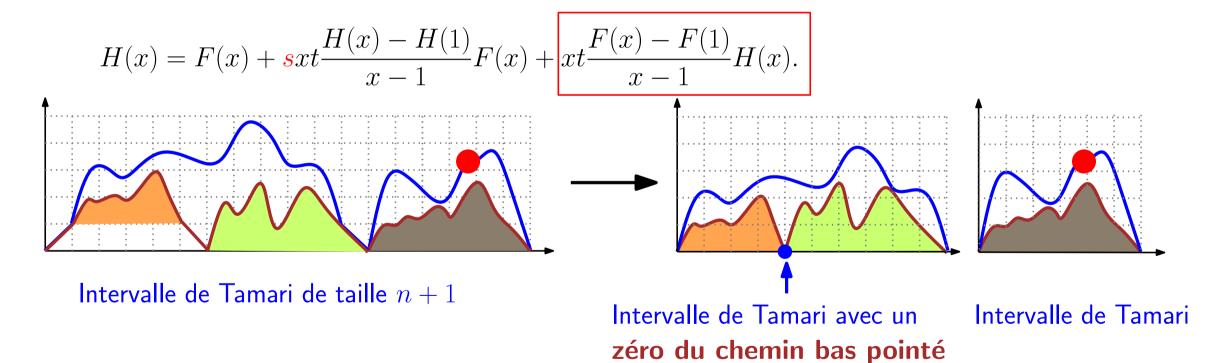
$$H(x) \equiv H(t, x, s) := \sum_{n \ge 0} t^n \sum_{(P,Q) \in \mathcal{I}_n} x^{\operatorname{contact}(P)} \sum_{i=0}^{2n} s^{Q(i)}.$$

t: taille

x: nombre de zéros du chemin du bas

s: hauteur du chemin du haut au point marqué.

On écrit trivialement une équation pour H en pointant la décomposition précédente:



H(x;t,s) série des intervalles avec un point marqué

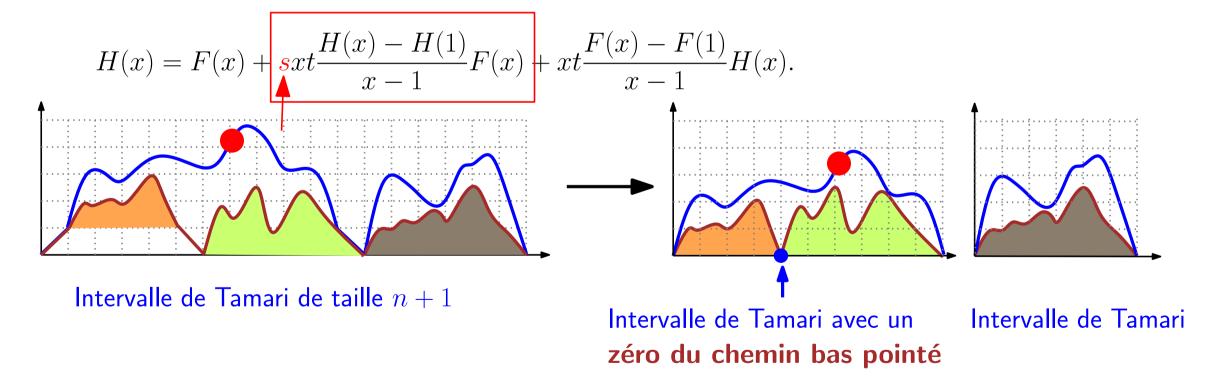
$$H(x) \equiv H(t, x, s) := \sum_{n \ge 0} t^n \sum_{(P,Q) \in \mathcal{I}_n} x^{\operatorname{contact}(P)} \sum_{i=0}^{2n} s^{Q(i)}.$$

t: taille

x: nombre de zéros du chemin du bas

s: hauteur du chemin du haut au point marqué.

On écrit trivialement une équation pour H en pointant la décomposition précédente:



Si l'on connaÎt F(x) (et c'est le cas) ce n'est rien d'autre qu'une équation à une variable catalytique linéaire (!) pour H. Ça se résout illico avec la méthode du noyau!

H(x;t,s) série des intervalles avec un point marqué

$$H(x) = F(x) + sxtF(x)\frac{H(x) - H(1)}{x - 1} + xt\frac{F(x) - F(1)}{x - 1}H(x).$$

H(x;t,s) série des intervalles avec un point marqué

$$H(x) = F(x) + sxtF(x)\frac{H(x) - H(1)}{x - 1} + xt\frac{F(x) - F(1)}{x - 1}H(x).$$

On écrit:
$$K(x)H(x) = F(x) - \frac{sxtF(x)H(1)}{(x-1)}$$

$$K(x) = \left(-1 + sxt \frac{F(x)}{x-1} + xt \frac{F(x) - F(1)}{x-1}\right).$$

H(x;t,s) série des intervalles avec un point marqué

$$H(x) = F(x) + sxtF(x)\frac{H(x) - H(1)}{x - 1} + xt\frac{F(x) - F(1)}{x - 1}H(x).$$

On écrit:
$$K(x)H(x) = F(x) - \frac{sxtF(x)H(1)}{(x-1)}$$

$$K(x) = \left(-1 + sxt \frac{F(x)}{x-1} + xt \frac{F(x) - F(1)}{x-1}\right).$$

On cherche x=X(t,s) qui annule K(x), on substitue et on trouve H(1). Rappelons que F(x) est connue!

H(x;t,s) série des intervalles avec un point marqué

$$H(x) = F(x) + sxtF(x)\frac{H(x) - H(1)}{x - 1} + xt\frac{F(x) - F(1)}{x - 1}H(x).$$

On écrit:
$$K(x)H(x) = F(x) - \frac{sxtF(x)H(1)}{(x-1)}$$

$$K(x) = \left(-1 + sxt \frac{F(x)}{x-1} + xt \frac{F(x) - F(1)}{x-1}\right).$$

On cherche x=X(t,s) qui annule K(x), on substitue et on trouve H(1). Rappelons que F(x) est connue!

• Théorème [C'24]. La série $H(1) \equiv H(1;t,s)$ est algébrique, avec une paramétrisation rationnelle explicite:

$$H(1) = \frac{(1 - 2z - Uz^{2})^{2}(1 + U)}{(1 - z)^{6}} \qquad t = z(1 - z)^{3}$$
$$s = \frac{U(1 - z)^{3}}{z(1 + U)^{2}(1 - Uz^{2} - 2z)}.$$

H(x;t,s) série des intervalles avec un point marqué

$$H(x) = F(x) + sxtF(x)\frac{H(x) - H(1)}{x - 1} + xt\frac{F(x) - F(1)}{x - 1}H(x).$$

On écrit:
$$K(x)H(x) = F(x) - \frac{sxtF(x)H(1)}{(x-1)}$$

$$K(x) = \left(-1 + sxt \frac{F(x)}{x-1} + xt \frac{F(x) - F(1)}{x-1}\right).$$

On cherche x=X(t,s) qui annule K(x), on substitue et on trouve H(1). Rappelons que F(x) est connue!

• Théorème [C'24]. La série $H(1) \equiv H(1;t,s)$ est algébrique, avec une paramétrisation rationnelle explicite:

$$H(1) = \frac{(1 - 2z - Uz^2)^2 (1 + U)}{(1 - z)^6} \qquad t = z(1 - z)^3$$
$$s = \frac{U(1 - z)^3}{z(1 + U)^2 (1 - Uz^2 - 2z)}.$$

 \longrightarrow Ce résultat contient en principe toute la distribution de la variable aléatoire $Q_n(I)$... Mais comment en déduire l'asymptotique voulue ?!?

$$H(1) \equiv H(1, t, s) := \sum_{n \ge 0} t^n \sum_{(P,Q) \in \mathcal{I}_n} \sum_{i=0}^{2n} s^{Q(i)}.$$

Théorème de transfert et D-finitude...

• Théorème de transfert [Flajolet-Odlyzko]. Soit f(t) algébrique, avec une singularité dominante unique en $\rho > 0$. Si $f(t) \sim c(1 - t/\rho)^{\alpha}$ quand $t \to \rho$, alors $[t^n]f(t) \sim c\Gamma(-\alpha)n^{-\alpha-1}\rho^{-n}$ quand $n \to \infty$. $(\alpha \notin \mathbb{N})$.

Théorème de transfert et D-finitude...

- Théorème de transfert [Flajolet-Odlyzko]. Soit f(t) algébrique, avec une singularité dominante unique en $\rho>0$. Si $f(t)\sim c(1-t/\rho)^{\alpha}$ quand $t\to \rho$, alors $[t^n]f(t)\sim c\Gamma(-\alpha)n^{-\alpha-1}\rho^{-n}$ quand $n\to\infty$. $(\alpha\not\in\mathbb{N})$.
- Application pour l'asymptotique des moments.

Soit
$$h_k = \left(\frac{\partial}{\partial s}\right)^k H(1)\Big|_{s=1}$$
, alors $\frac{[t^n]h_k}{[t^n]h_0} = \mathbf{E}[(Q_n(I))_k]$
$$(m)_k := m(m-1)\dots(m-k+1)$$

- \rightarrow pour faire l'asymptotique des moments il suffit de connaître la singularité dominante de h_k pour tout $k \ge 0$.
- \rightarrow à partir d'une équation algébrique pour H(1), je peux faire ça automatiquement (en principe) pour n'importe quel k fini.

Théorème de transfert et D-finitude...

- Théorème de transfert [Flajolet-Odlyzko]. Soit f(t) algébrique, avec une singularité dominante unique en $\rho > 0$. Si $f(t) \sim c(1 t/\rho)^{\alpha}$ quand $t \to \rho$, alors $[t^n]f(t) \sim c\Gamma(-\alpha)n^{-\alpha-1}\rho^{-n}$ quand $n \to \infty$. $(\alpha \notin \mathbb{N})$.
- Application pour l'asymptotique des moments.

Soit
$$h_k = \left(\frac{\partial}{\partial s}\right)^k H(1)\Big|_{s=1}$$
, alors $\frac{[t^n]h_k}{[t^n]h_0} = \mathbf{E}[(Q_n(I))_k]$
$$(m)_k := m(m-1)\dots(m-k+1)$$

- \rightarrow pour faire l'asymptotique des moments il suffit de connaître la singularité dominante de h_k pour tout $k \ge 0$.
- \rightarrow à partir d'une équation algébrique pour H(1), je peux faire ça automatiquement (en principe) pour n'importe quel k fini.
- L'astuce qui tue le truc que j'aime vraiment dans ce travail :)

Toute série algébrique est D-finie (solution d'une ED linéaire à coeffs polynomiaux) Notre série, vue en la variable s, et même (s-1), est algébrique sur $\mathbb{Q}(t)$ Donc elle est D-finie: ses coefficients, les h_k , satisfont une récurrence polynomiale!

The D-finite trick...

Soit une série $H(1) = \equiv H(1;t,s)$ algébrique.

Soit
$$h_k = \left(\frac{\partial}{\partial s}\right)^k H(1)\Big|_{s=1}$$
.

Notre série, vue en la variable s-1, est algébrique sur $\mathbb{Q}(t)$

Donc elle est D-finie: ses coefficients, les h_k , satisfont une récurrence polynomiale!

$$h_k(t) = \sum_{d=1}^{L} Rat_d(t,k) h_{k-d}(t)$$
 $Rat_d = \text{fraction rationnelle explicite}$ en k (algébrique en t)

The D-finite trick...

Soit une série $H(1) = \equiv H(1; t, s)$ algébrique.

Soit
$$h_k = \left(\frac{\partial}{\partial s}\right)^k H(1)\Big|_{s=1}$$
.

Notre série, vue en la variable s-1, est algébrique sur $\mathbb{Q}(t)$

Donc elle est D-finie: ses coefficients, les h_k , satisfont une récurrence polynomiale!

$$h_k(t) = \sum_{d=1}^{L} Rat_d(t,k) h_{k-d}(t)$$
 $Rat_d = \text{fraction rationnelle explicite}$ en k (algébrique en t)

Sous des hypothèses raisonnables, on peut déterminer la singularité dominante de h_k facilement par induction sur k!!!

The D-finite trick...

Soit une série $H(1) = \equiv H(1;t,s)$ algébrique.

Soit
$$h_k = \left(\frac{\partial}{\partial s}\right)^k H(1)\Big|_{s=1}$$
.

Notre série, vue en la variable s-1, est algébrique sur $\mathbb{Q}(t)$

Donc elle est D-finie: ses coefficients, les h_k , satisfont une récurrence polynomiale!

$$h_k(t) = \sum_{d=1}^L Rat_d(t,k)h_{k-d}(t)$$
 $Rat_d = \text{fraction rationnelle explicite}$ en k (algébrique en t)

Sous des hypothèses raisonnables, on peut déterminer la singularité dominante de h_k facilement par induction sur k!!!

Dans notre cas on montre par induction:

$$h_k(t) \sim c_k (1 - t/(27/256))^{1 - \frac{3}{4}k}$$

où $c_k = \frac{\sqrt{6}(3k-4)(3k-8)}{96}c_{k-2}$. La récurrence se résout directement et conduit au moment limite vu au premier transparent! $\mathbf{E}[Z^k] = \frac{\sqrt{3}\cdot 2^{-\frac{k}{4}-1}}{\sqrt{\pi}} \frac{\Gamma(\frac{1}{4}k+\frac{1}{3})\Gamma(\frac{1}{4}k+\frac{2}{3})}{\Gamma(\frac{1}{4}k+\frac{1}{2})}$.

The D-finite trick...

Soit une série $H(1) = \equiv H(1; t, s)$ algébrique.

Soit
$$h_k = \left(\frac{\partial}{\partial s}\right)^k H(1)\Big|_{s=1}$$
.

Notre série, vue en la variable s-1, est algébrique sur $\mathbb{Q}(t)$

Donc elle est D-finie: ses coefficients, les h_k , satisfont une récurrence polynomiale!

$$h_k(t) = \sum_{d=1}^L Rat_d(t,k) h_{k-d}(t)$$
 $Rat_d = \text{fraction rationnelle explicite}$ en k (algébrique en t)

Sous des hypothèses raisonnables, on peut déterminer la singularité dominante de h_k facilement par induction sur k!!!

Dans notre cas on montre par induction:

$$h_k(t) \sim c_k(1 - t/(27/256))^{1 - \frac{3}{4}k}$$

où $c_k = \frac{\sqrt{6}(3k-4)(3k-8)}{96}c_{k-2}$. La récurrence se résout directement et conduit au moment limite vu au premier transparent! $\mathbf{E}[Z^k] = \frac{\sqrt{3}\cdot 2^{-\frac{k}{4}-1}}{\sqrt{\pi}} \frac{\Gamma(\frac{1}{4}k+\frac{1}{3})\Gamma(\frac{1}{4}k+\frac{2}{3})}{\Gamma(\frac{1}{4}k+\frac{1}{2})}$.

Exo: montrer sans réfléchir et en quelques lignes de Maple que la hauteur d'un point au hasard sur un chemin de Dyck uniforme converge en échelle \sqrt{n} vers une loi de Rayleigh.

The D-finite trick...

Soit une série $H(1) = \equiv H(1;t,s)$ algébrique.

Soit
$$h_k = \left(\frac{\partial}{\partial s}\right)^k H(1)\Big|_{s=1}$$
.

Notre série, vue en la variable s-1, est algébrique sur $\mathbb{Q}(t)$

Donc elle est D-finie: ses coefficients, les h_k , satisfont une récurrence polynomiale!

$$h_k(t) = \sum_{d=1}^L Rat_d(t,k) h_{k-d}(t)$$
 $Rat_d = \text{fraction rationnelle explicite}$ en k (algébrique en t)

Sous des hypothèses raisonnables, on peut déterminer la singularité dominante de h_k facilement par induction sur k!!!

Dans notre cas on montre par induction:

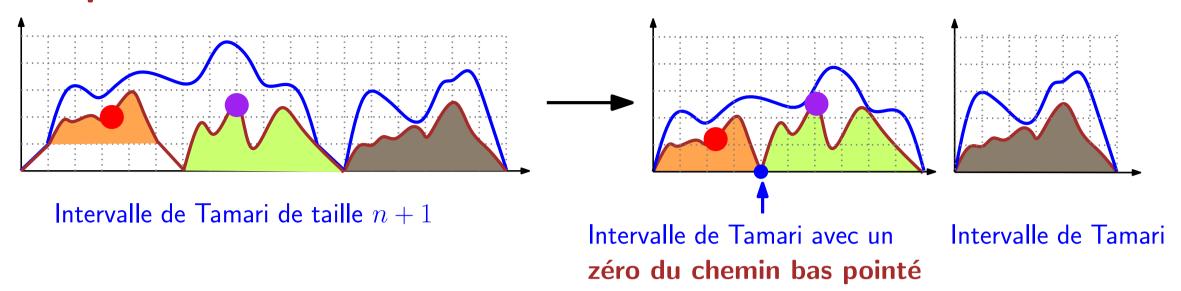
$$h_k(t) \sim c_k (1 - t/(27/256))^{1 - \frac{3}{4}k}$$

si ce n'est pas déjà connu, cette astuce est clairement le truc le plus intéressant dans mon article

où $c_k = \frac{\sqrt{6}(3k-4)(3k-8)}{96}c_{k-2}$. La récurrence se résout directement et conduit au moment limite vu au premier transparent! $\mathbf{E}[Z^k] = \frac{\sqrt{3}\cdot 2^{-\frac{k}{4}-1}}{\sqrt{\pi}} \frac{\Gamma(\frac{1}{4}k+\frac{1}{3})\Gamma(\frac{1}{4}k+\frac{2}{3})}{\Gamma(\frac{1}{4}k+\frac{1}{2})}$.

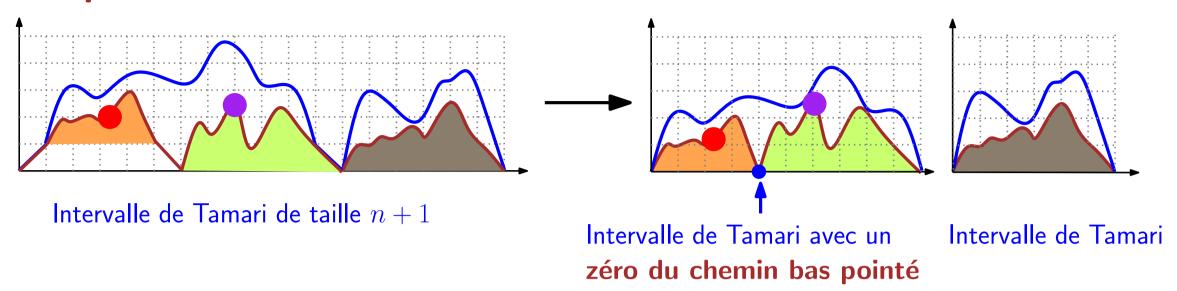
Exo: montrer sans réfléchir et en quelques lignes de Maple que la hauteur d'un point au hasard sur un chemin de Dyck uniforme converge en échelle \sqrt{n} vers une loi de Rayleigh.

Quelques mots sur le chemin du bas



→ pour le chemin du bas, on doit savoir si le point marqué arrive avant ou après le premier contact, sinon on ne peut pas suivre sa hauteur!

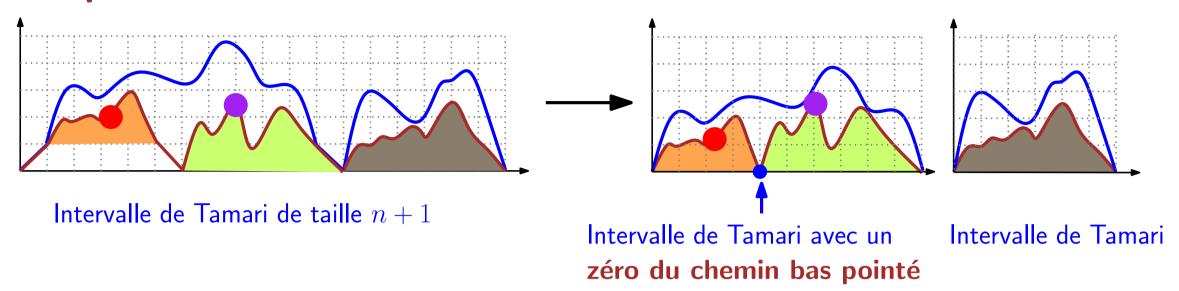
Quelques mots sur le chemin du bas



- → pour le chemin du bas, on doit savoir si le point marqué arrive avant ou après le premier contact, sinon on ne peut pas suivre sa hauteur!
- → on a besoin de deux variables catalytiques (!!!)

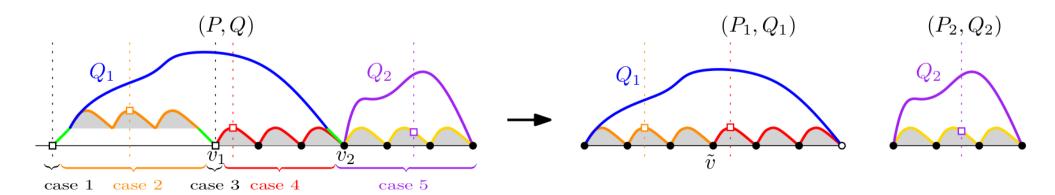
$$G(x,y) \equiv G(t,x,y,w) := \sum_{n\geq 0} t^n \sum_{(P,Q)\in\mathcal{I}_n} \sum_{i=0}^{2n} w^{P(i)} x^{\operatorname{contact}_{< i}(P)} y^{\operatorname{contact}_{\geq i}(P)}.$$

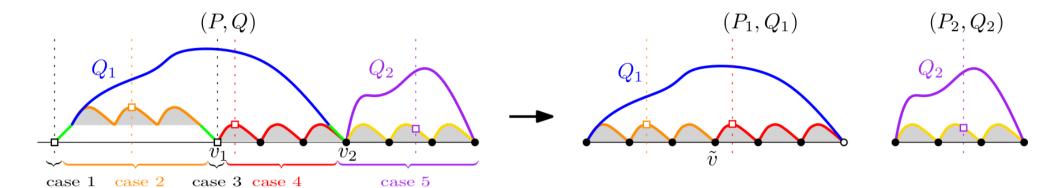
Quelques mots sur le chemin du bas



- → pour le chemin du bas, on doit savoir si le point marqué arrive avant ou après le premier contact, sinon on ne peut pas suivre sa hauteur!
- → on a besoin de deux variables catalytiques (!!!)

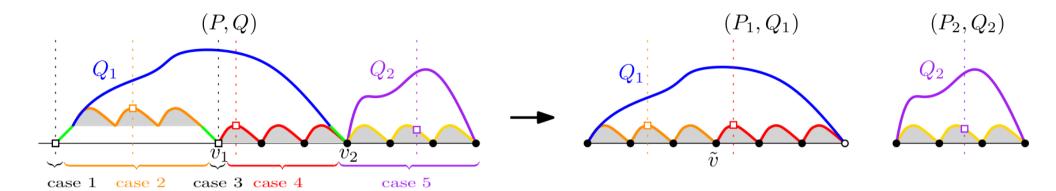
$$G(x,y) \equiv G(t,x,y,w) := \sum_{n\geq 0} t^n \sum_{(P,Q)\in\mathcal{I}_n} \sum_{i=0}^{2n} w^{P(i)} x^{\operatorname{contact}_{< i}(P)} y^{\operatorname{contact}_{\geq i}(P)}.$$





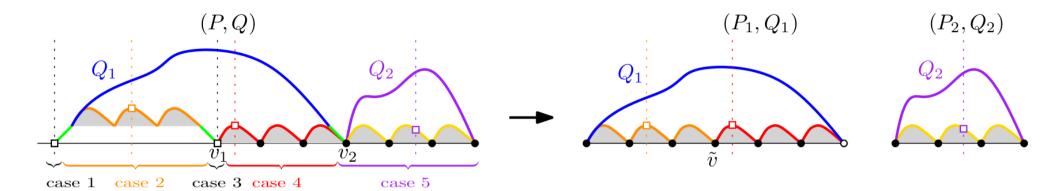
$$G(x,y) = F(y) + txw \frac{G(1,y) - G(1,1)}{y-1} F(y) + tx \frac{F(y) - yF(1)}{y-1} F(y)$$
$$+ t \frac{x^2}{y} \frac{G(x,y) - \frac{y}{x} F(x) - G(1,y) + yF(1)}{x-1} F(y) + tx \frac{F(x) - F(1)}{x-1} G(x,y).$$

 \rightarrow Fait intervenir G(x,y), G(1,y), G(1,1)... mais pas G(x,1).



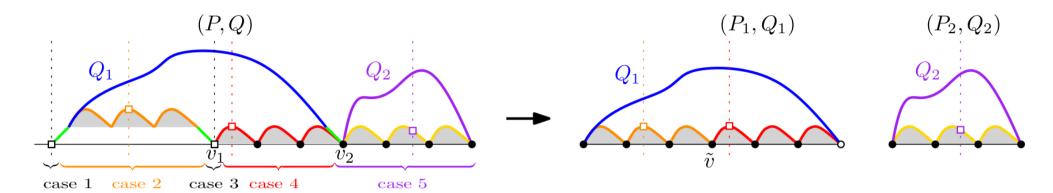
$$G(x,y) = F(y) + txw \frac{G(1,y) - G(1,1)}{y-1} F(y) + tx \frac{F(y) - yF(1)}{y-1} F(y)$$
$$+ t \frac{x^2}{y} \frac{G(x,y) - \frac{y}{x} F(x) - G(1,y) + yF(1)}{x-1} F(y) + tx \frac{F(x) - F(1)}{x-1} G(x,y).$$

- \rightarrow Fait intervenir G(x,y), G(1,y), G(1,1)... mais pas G(x,1).
- → du coup ce n'est pas si dur à résoudre!
 - \dots on voit l'équation comme une équation catalytique en x où y est un paramètre \dots
 - ... une fois résolue (méthode du noyau ici), on n'a plus qu'une équation à une variable catalytique (y). Et voilà!



$$G(x,y) = F(y) + txw \frac{G(1,y) - G(1,1)}{y-1} F(y) + tx \frac{F(y) - yF(1)}{y-1} F(y)$$
$$+ t \frac{x^2}{y} \frac{G(x,y) - \frac{y}{x} F(x) - G(1,y) + yF(1)}{x-1} F(y) + tx \frac{F(x) - F(1)}{x-1} G(x,y).$$

- \rightarrow Fait intervenir G(x,y), G(1,y), G(1,1)... mais pas G(x,1).
- → du coup ce n'est pas si dur à résoudre!
 - \dots on voit l'équation comme une équation catalytique en x où y est un paramètre...
 - ... une fois résolue (méthode du noyau ici), on n'a plus qu'une équation à une variable catalytique (y). Et voilà!
- → Cette méthode d'élimination successive est utilisée indépendamment (et beaucoup plus généralement!) par Bousquet-Mélou et Notarantonio.



$$G(x,y) = F(y) + txw \frac{G(1,y) - G(1,1)}{y-1} F(y) + tx \frac{F(y) - yF(1)}{y-1} F(y)$$
$$+ t \frac{x^2}{y} \frac{G(x,y) - \frac{y}{x} F(x) - G(1,y) + yF(1)}{x-1} F(y) + tx \frac{F(x) - F(1)}{x-1} G(x,y).$$

- \rightarrow Fait intervenir G(x,y), G(1,y), G(1,1)... mais pas G(x,1).
- → du coup ce n'est pas si dur à résoudre!
 - \dots on voit l'équation comme une équation catalytique en x où y est un paramètre \dots
 - ... une fois résolue (méthode du noyau ici), on n'a plus qu'une équation à une variable catalytique (y). Et voilà!
- → Cette méthode d'élimination successive est utilisée indépendamment (et beaucoup plus généralement!) par Bousquet-Mélou et Notarantonio.
- → Pour l'asymptotique, la "D-finite trick" marche à nouveau!

Conclusion

• Si j'ai bien compris, Bertoin-Curien-Riera (livre à venir) savent faire la limite d'échelle complète des chemins. Je ne sais pas s'ils savent obtenir la loi limite explicite pour un point.

Conclusion

- Si j'ai bien compris, Bertoin-Curien-Riera (livre à venir) savent faire la limite d'échelle complète des chemins. Je ne sais pas s'ils savent obtenir la loi limite explicite pour un point.
- Cette loi limite est-elle universelle pour les équations de Bousquet-Mélou Jehanne positives? (l'approche probabiliste résout probablement aussi cette question!)

Conclusion

- Si j'ai bien compris, Bertoin-Curien-Riera (livre à venir) savent faire la limite d'échelle complète des chemins. Je ne sais pas s'ils savent obtenir la loi limite explicite pour un point.
- Cette loi limite est-elle universelle pour les équations de Bousquet-Mélou Jehanne positives? (l'approche probabiliste résout probablement aussi cette question!)
- J'aimerais avoir d'autres applications de mon "asymptotic D-finite trick"!

