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I.1 Convex polygons

Remark. Using flips, one can measure a distance between two triangulations
of a surface with a prescribed set of vertices.

Question (open). Given two triangulations of a convex n-gon, what is the
distance between them in the flip-graph of the polygon?

Question (solved). What is the largest possible distance between any two
triangulations in the flip-graph of a convex n-gon? In other words, what is
the diameter (of the graph) of the associahedron?

Theorem (Sleator–Tarjan–Thurston 1988). The (n − 3)-dimensional associ-
ahedron has diameter 2n − 10 when n is large enough.

Theorem (P. 2014). Large enough means n ≥ 13.



I.1 Convex polygons

Distances in the graph of the associahedron are also rotation distances be-
tween binary trees. Rotations are used in computer science to re-balance
binary trees in order to improve data storage efficiency.

Distances in the graph of the associahedron are used to measure dissimilarity
between two binary (phylogenetic) trees in computational biology. How can
these distances be computed or, at least, approximated?

Heuristic that estimates d(T1,T2)

(1) Flip an arc in T1 such that the number
of arc crossings with T2 decreases,
(2) Repeat until T2 is reached.

Theorem (Hanke–Ottman–Schuierer 1997).
One can always flip some arc in T1 such
that the number of arc crossings with T2

decreases after the flip.

{2 crossings

+2 crossings

{2 crossings
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tween binary trees. Rotations are used in computer science to re-balance
binary trees in order to improve data storage efficiency.

Distances in the graph of the associahedron are used to measure dissimilarity
between two binary (phylogenetic) trees in computational biology. How can
these distances be computed or, at least, approximated?

Heuristic that estimates d(T1,T2)

(1) Flip an arc in T1 such that the number
of arc crossings with T2 decreases,
(2) Repeat until T2 is reached.

Theorem (Hanke–Ottman–Schuierer 1997).
One can always flip some arc in T1 such
that the number of arc crossings with T2

decreases after the flip.

Unfortunately...

Theorem (Cleary–Maio 2018).
The distance estimation com-
puted from this arc crossings-
based heuristic is sometimes
one off d(T1,T2).

Can this get worse? Can the
estimation be larger than
αd(T1,T2) where α > 1?



I.2. General point configurations
In the geometric setup, if interior points are allowed or the
polygon is non-convex, flips are not always possible!

Remark. The diameter of the flip-graph of a double chain on n vertices is
about n2 whereas for a convex n-gon, this diameter is about 2n.

Theorem (Lubiw–Pathak 2015/Pilz 2014). Flip-distance computation is NP-
complete/APX -hard when interior points are allowed.

Theorem (Aichholzer–Mulzer–Pilz 2015). Flip-distance computation is NP-
complete for non-convex polygons.

In dimension 5 and up, flip-graphs can be disconnected (Santos 2005).

Question. Are the flip-graph of the 3- and 4-dimensional point configurations
always connected?

Theorem (P 2012). The flip-graph of the 4-dimensional cube is connected.



II.1. Flip-graphs of surfaces
Remark. The (geometric) case of a convex n-gon
is the same as a topological disk with n marked
points in its boundary.

'

Question. Instead of a disk, can we pick a topological surface, possibly with
punctures and at least one marked point in each boundary component?

boundaries

punctures

genera

marked points

Lemma (S̆varc 1955, Milnor 1968). The graph whose vertices are the tri-
angulations of the surface Σ and whose edges correspond to flipping arcs is
quasi-isometric to any Cayley graph of the mapping class group of Σ.
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II.1. Flip-graphs of surfaces
Remark. The (geometric) case of a convex n-gon
is the same as a topological disk with n marked
points in its boundary.

'

Question. Instead of a disk, can we pick a topological surface, possibly with
punctures and at least one marked point in each boundary component?

boundaries

punctures
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Theorem (Disarlo–Parlier 2019). Given two triangulations T1 and T2 of the
surface Σ, one can always flip some arc in T1 such that the number of arc
crossings with T2 decreases after the flip.



II.1. Flip-graphs of surfaces

Question. What about

(1) the connectedness

(2) the combinatorics

of the flip-graph of Σ?

Theorem (Mosher 1988). The flip-graph of Σ is always connected.

...but it can be infinite (although the degree of its vertices is finite)...

a

b

a

b
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Consider a surface Σn with n marked points on a privileged boundary.

Question. Call MF(Σn) the quotient of the flip-graph of Σn by its homeo-
morphisms. What is the diameter ∆ of MF(Σn)?



II.2. Diameters of modular flip-graphs
If the homeomorphisms can exchange the punctures:

Theorem (Frati 2017/Cardinal–Hoffmann–Kusters–Tóth–Wettstein 2018).
If Σn is a n-punctured sphere, then the diameter ∆ of MF(Σn) satisfies

7n/3 + O(1) ≤ ∆ ≤ 5n − 23.

If the homeomorphisms cannot exchange the punctures:

• Disk: ∆ = 2n − 10 when n > 12 (P. 2014),

• Cylinder with a unique point on the inner boundary:

∆ = ⌊5n/2⌋ − 2 (Parlier–P. 2017),

• Surface with three boundaries:

∆ = 3n + O(1) (Parlier–P. 2017),

• Torus with a boundary containing all the vertices:

5n/2 + O(1) ≤ ∆ ≤ 23n/8 + O(1) (Parlier–P. 2018),

• Punctured disk: ∆ = 2n − 2 (Parlier–P. 2018).



II.2. Diameters of modular flip-graphs

Theorem (Parlier–P. 2018). The maximal distance between two triangula-
tions of the punctured disk is exactly 2n − 2.

a
a

n-k flips

Remarks.

i. There are n (non-boundary) arcs in such a triangulation.

ii. The puncture cannot disappear and is incident to at least one edge.

iii. The puncture can be incident to exactly one edge of the triangulation.



II.2. Diameters of modular flip-graphs

Consider a cylinder with n vertices in the outer boundary labeled 1 to n
clockwise and one vertex labeled 0 in the inner boundary.

1

2

3

4

n

0



II.2. Diameters of modular flip-graphs

There is a (blue) triangle in any triangulation, whose vertices are 0 and a
boundary vertex x . A triangulation has exactly n + 1 interior edges.
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Hence at most n − 1 flips are required to insert all the edges incident to 0.
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There is a (blue) triangle in any triangulation, whose vertices are 0 and a
boundary vertex x . A triangulation has exactly n + 1 interior edges.
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Boundary vertices are separated by at most n/2− 1 vertices. Bringing the
blue triangles together thus requires at most n/2 flips.



II.2. Diameters of modular flip-graphs

Theorem (Parlier–P. 2017). The distance between two triangulations of the
cylinder is never greater than ⌊5n/2⌋ − 2

This upper bound is sharp for all n ≥ 1.

1 2 n/2

n/2+1n-1n

1 2 n/2

n/2+1n n-1

These two triangulations have flip distance exactly ⌊5n/2⌋ − 2.

Remark. One obtains two triangulations of the punctured disk with flip
distance 2n−2 by shrinking the inner boundary to a puncture and identifying
the two arcs incident to that puncture.



II.2. Diameters of modular flip-graphs

Remarks.

• We have observed growth rates of

2 (disk, punctured disk),
5/2 (cylinder), and
3 (surface with 3 boundaries).

• Growth rates cannot exceed 4 (Parlier–P. 2017)...

• ...or be between 2 and 5/2 (Parlier–P. 2018).

Open questions.

• What are all the possible growth rates?

• What is the exact growth rate for the bordered torus?

• What diameters can we compute when we allow the topology of the
surface to vary (and not only n)?

• ...and when vertices are not marked?



III. A topological model for paths
Remark. A path between triangulations T1 and T2 in the graph of the asso-
ciahedron can be thought of as a certain type of 3-dimensional triangulation.

T1 T2

Remark. A blow-up triangula-
tion is not a usual triangulation:

(1) Multiple arcs are allowed,

(2) Two tetrahedra can be
glued along the union of
two triangles.

Remark. d(T1,T2) is also the
number of tetrahedra required
to fill a triangulated sphere S .

...and an upper bound on the
L1 norm of the 3-chains whose
boundary is a 2-cycle correspond-
ing to the triangulation of S .
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III.1. Strong convexity
Lemma (Sleator–Tarjan–Thurston 1988). The triangulations that contain a
given arc ε induce a strongly convex subgraph in the graph of the associahe-
dron: ε is not removed along any geodesic between two such triangulations.

Proof. Consider a path between two triangulations that contain ε and
project each triangulation T in that path as follows.

x xx

Consecutive triangulations in the path are projected to either

(1) two triangulations related by a flip or
(2) the same triangulation.

A flip that removes ε is of the second kind. If there is such a flip in the
considered path, the projected path is shorter. □

Theorem (Disarlo–Parlier 2019). The same holds for topological surfaces.



III.2. Geodesicity implies flagness

Theorem (P.-Wang 2021). The blow-up triangulations that correspond to a
geodesic path in the graph of the associahedron are flag.

A blow-up triangulation K is flag when three arcs in K that form a cycle
always bound a triangle of K .

In other words: if the three edges of a triangle abc appear in possibly distinct
triangulations along a geodesic path in the graph of the associahedron, then
abc itself appears along that path.

Proof rough idea.

a c

b

a c

b

a c

b

Theorem (P.-Wang 2021). Blow-up triangulations corresponding to geodesic
paths remain flag when the initial convex polygon (or topological disk) is
replaced by a convex polygon with well-placed flat vertices.



III.3. Some consequences
Theorem (P.-Wang 2021). The arc crossings based distance estimate method
sometimes overestimates distances by a factor that can get arbitrarily close
to 3/2 both in the cases of associahedra and topological surfaces.
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III.3. Some consequences
Theorem (P.-Wang 2021). The subgraph induced by the triangulations that
contain a given arc is not always strongly convex in the limit case of a geo-
metric convex polygon with as few as two flat vertices or punctures.
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