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Realizable chirotopes = combinatorial representation of configuration of points

... while preserving many geometric properties, like convex hull, crossing properties, number of
triangulations, ...

Possible applications: entries of algorithms using only the orientation, build a database of every
relevant configurations of points (testing conjectures, benchmarks, ...)

Reduces the diversity of points in R2 to a finite number of configurations...
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Asymptotics is hard. Number tn of labeled chirotopes of size n behaves like tn = n4n+Θ(n/ log n)

[Goodman and Pollack 86]
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realizability is NP-hard [Shor 91], and is in fact ETR-complete [Mnëv 86]

exhaustive polynomial time random generator ⇔ Realizability is in NP [Discussion with Emo Welzl]

Conclusion big universe, we probably can only build telescopes

In this talk, we define an operation that builds big chirotopes by
assembling smaller chirotopes together
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a

b

c
d

A

z∗

D

E

x∗ y∗

1 is associative: we can iterate the process to build a whole chirotope tree

η

t∗

B

C



Bowtie construction

βα 
κ(x1, x2, x3) = α(x1, x2, x3) if x1, x2, x3 are all in X ;
κ(x1, x2, y) = α(x1, x2, x

∗) if x1, x2 are in X and y is in Y ;
κ(x , y2, y3) = β(y∗, y2, y3) if x is in X and y2, y3 are in Y ;
κ(y1, y2, y3) = β(y1, y2, y3) if y1, y2, y3 are all in Y .

α realizable chirotope on X ∪ {x∗}, and β on Y ∪ {y∗}

the bowtie κ
def
= α x∗1y∗ β

is defined on X ∪ Y by:

α x∗1y∗ β is a realizable chirotope if and only if α and β are realizable and x∗ and y∗ are extreme in α
and β. [Bouvel,Féray,Goaoc,K.]
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◦ For every κ on n elements,

– |Tκ| = O(30n) [Sharir and Sheffer, 2011]
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Triangulations of a chirotope tree
36 nodes, each decorated with a realizable chirotope of
size 9, adding up to 254 elements.

Can we compute its number of triangulations?

Fastest generic algorithms: Compute the number of
triangulations of a given point set:
◦ O(n22n) [Alvarez and Seidel 2013]
◦ O(n(11+o(1))

√
n) [Marx and Miltzow 2016]

Many questions on triangulations are still open:
◦ For every κ on n elements,

– |Tκ| = O(30n) [Sharir and Sheffer, 2011]
– |Tκ| = Ω(2.63n) [Aichholzer et al, 2016]

◦ It is conjectured that the minimal is O(3.47n)
[Hurtado and Noy 97]

◦ Max reached: Koch chains has ≈ 9.08n triangulations
[Rutschmann and Wettstein 2022]

Strategy Combine generic algorithms with bowtie
properties
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[xa]Pα,x∗(x) [yb]Pβ,y∗(y)

κ = α x∗1y∗ β

x∗ y∗X Y Bijection

36 nodes, each decorated with a chirotope of size 9,
adding up to 254 elements.

Number of triangulations?

◦ Same general idea with the bijection
◦ Involves full triangulation polynomials
→ marking degrees of proxies
→ keeping track of edges between proxies

Pα,x∗,z∗(x , z , exz) = x2z3(1+x+x2zexz)

α x3z3
x∗

z∗

x2z3 x4z4exz
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|Tκ| =
∑
a,b≥2

(
a+ b − 2

a− 1

)
[xa]Pα,x∗(x) [yb]Pβ,y∗(y)

κ = α x∗1y∗ β

x∗ y∗X Y Bijection

36 nodes, each decorated with a chirotope of size 9,
adding up to 254 elements.

Number of triangulations?

◦ Same general idea with the bijection
◦ Involves full triangulation polynomials
→ marking degrees of proxies
→ keeping track of edges between proxies

The number of triangulations of a chirotope tree can be computed in polynomial time from the
precomputed full triangulation polynomials of the nodes [BFGK]

|Tκ| ≈ 5.92966751.10180 computed exactly in a few seconds using Sagemath.
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Computing triangulation polynomials

Pα,x∗(x) = x2(1 + x + x2) Pα,x∗(1) = 3

α x3 x2 x4
x∗

First idea: enumerate all triangulations with Sage and deduce the polynomial

→ bug in sage !

Better idea: the O(n22n) algorithm of [Alvarez and Seidel 2013] can be easily adapted to compute the
full triangulation polynomials

Limitation: only for a fixed given tree. Does not apply for recursive families of chirotope trees.
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Kernel method: find two u(x) analytic canceling the kernel to reduce to a linear system
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∑
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∑
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∑
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We obtain F (1, x) =
∑

n≥1 |Tαn |xn (A066357)
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.
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Conclusion
Chirotope tree : one way of building big chirotopes from smaller ones

Actually it is a well defined operation, every labeled chirotope has a unique chirotope tree such that
◦ each node contains an indecomposable chirotope
◦ there is no edge between two convex chirotopes

The number of triangulations of a chirotope tree can be computed efficiently from those of its nodes

Some chain-like trees are analyzable using analytic combinatorics

This is a telescope: 3(n −O(n − 2))tn−1 ≤ dn ≤ O(n−3)tn. [BFGK]

Chirotope trees with many nodes promote elements in convex positions

Further work
◦ how efficiently can one decompose a given chirotope into a canonical chirotope tree?
◦ what other statistics can be computed efficiently via this decomposition?
◦ can we apply analytic combinatorics to more complex trees, for instance a complete full binary tree?
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∑
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|Tα3 | = Q3(0) = 12 + 122 + 672 + 2242 + 4842 + 6722 + 5712 = 1066691
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Start with α1 = Recursively define αn+1 =
xn+1

yn+1 zn+1
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n

xLn

αR
n

xRn

x1

y1 z1

Then if Qn(x) = (x + 1)Pn(x + 1) and ∆(P) = P−P(0)
x we have:

Qn+1(x) = (x + 1)4
∑
k≥2

(
∆(k)(Qn(x))

)2

Makes first terms computation faster However does not seem to be analytically friendly :(

Thank you!
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