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Two dimensional quantum gravity theories come in three different versions:

1) Liouville gravity: consider all metrics on a two dimensional manifold (h,b).
Can be formulated rigorously from combinatorics (counting of “maps”, i.e.
polygonizations of surfaces) and from the “continuous” point of view
(Liouville CFT). This field is so mature that it is now part of probability theory
(Sheffield, Duplantier, Vargas, Rhodes, ...).

2) Topological gravity: fix both bulk curvature and boundary extrinsic
curvature (geodesic boundaries). Amounts to integrating over the moduli
space of (h,b) surfaces with the Weil-Petersson measure (Witten, Kontsevitch,
Mirzakhani; topological recursion, matrix model).

3) Jackiw-Teitelboim gravity: fix the bulk curvature but do not impose any
condition on the boundary. Relevant for near-extremal black holes,
holography, related to the duals of SYK and tensor/matrix models, etc. Very
interesting on its own as well (see below). Three versions: negative curvature
(much studied, holography), zero curvature (simplest set-up for understanding
the UV properties) and positive curvature (most interesting? Cosmology).
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A strong physical motivation: near-extremal black holes

Basic example: Reissner-Nordstrom in 4D (Kerr could also be studied, etc.)
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Extremal: M=Q=ry,, T=0

Near horizon region of the extremal black hole: r—ry=p <1
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The near-horizon region is  Hy x S

The geometry develops a long hyperbolic (AdS) throat.



The fundamental puzzles

In the near extremal limit, i.e. T goes to zero, one finds that:
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S =mri + 4rrdT + - -

This semi-classical analysis predicts:

1) A huge ground state degeneracy (extremely suspicious for a non-
supersymmetric system)

2) An inconsistency with the usual Hawking evaporation process at as soon
as T <1/r;



The resolution of the puzzle shows that the semi-classical analysis breaks
down at very low temperature in spite of the fact that the geometry is
arbitrarily weakly curved, due to strong quantum fluctuations of a metric
mode in the near-horizon region.

The near-horizon region turns out to be described by JT gravity in negative
curvature in a certain limit (Schwarzian).

Asymptotically
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The boundary between the near-horizon region and the rest of the geometry
fluctuates and the fluctuations correspond to particular geometries in JT that
we describe in more detail later.

One can take into account these fluctuations exactly. They yield the crucially
needed modifications in the low-temperature energy and entropy:

Naive semi-classical:
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Taking into account the Schwarzian mode:
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The correction to the entropy is associated with a density of state

p(F) x sinh(c\/E — 7“0)



So, on top of being an extremely interesting model on its own (I hope you'll
be convinced by the end of the talk!), recall that JT in negative curvature and
in some limit describes a fundamental quantum gravity effect in "~ real-world”

black holes.

JT in zero or positive curvature is also very relevant for physics, describing the
near-extremal black holes in de Sitter space and, even more importantly, toy
cosmological models.

But essentially nothing was known about these models before my recent
work, because they do not have a Schwarzian description. We shall talk more
about these models later on.



Goals of this research

Formulate Euclidean Jackiw-Teitelboim quantum gravity in a rigorous way, for
finite value of the parameters (and thus away from the Schwarzian limit of the
negative curvature model; and for the zero and positive curvature models as

well).

We would like to eventually put the subject on the same footing as Liouville
gravity.

Two points of view : combinatorial and probabilistic (“discrete” and

“continuous”)

We are also interested in the real-time version of the theory, which comes
with its load of additional puzzles (not for today!)



Upshots

1) The usual formulation of the negative curvature model in terms of the
Schwarzian theory is approximate. The Schwarzian description is an effective,
long distance description of JT gravity, valid on distance scales that are much
larger than the curvature length scale. In particular, the Schwarzian
description plays a role in JT gravity which is similar to the role it plays in the
SYK model.

2) A discretized formulation of JT gravity is possible in terms of a new model
of random path (describing the fluctuating boundary). The model has
remarkable, surprising properties. A matrix model doing the correct counting
of configurations can be constructed (not solved, yet).



3) All three models (negative, zero and positive) curvatures have the same
short-distance properties. But their long-distance properties are qualitatively
different. The Schwarzian is only relevant to describe the long-distance
behaviour of the negative curvature model. The positive curvature model
exists only for positive cosmological constant.

4) The technology developed in the context of Liouville gravity can be
imported in JT gravity as well. The conformal gauge can be used to construct
an explicit, rigorous and a priori tractable framework within which the theory
can be studied.



Typical configuration/

fractal boundary/

description in terms of a distribution-
valued boundary conformal factor

Reparameterization ansatz/
smooth and gently wiggling boundary/
Schwarzian description
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Plan

1) Discretized formulation and self-overlapping polygons

2) Discussion of the macroscopic properties (emergence of the Schwarzian
description in negative curvature, breakdown of the positive curvature theory
for negative cosmological constant, ...)

3) Conformal gauge: conceptual discussion; semi-classical approximation;
exact description and first exact results.






The metric space for finite geometries

It can be described using immersions of the disk into a canonical space
(hyperbolic space, Euclidean space or the two-sphere). This yields a "~ distorted
disk”” representing isometrically a metric on the original ““source” disk.
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Overlaps




Winding numbers
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A given boundary curve may bound several distincts disks (i.e. be associated
with several distinct metrics on the source disk!) -> multiplicity index

Upshot: JT gravity is a random curve model of a new type. We have to count
self-overlapping curves, taking into account the multiplicity.




Precise counting

1) path code: Straight, Right of Left move, modulo cyclic permutation and
reversal.

2) We do not identify configurations related by reflections (though we could,
but it would be unnatural from the matrix model perspective).

3) A typical configuration is counted 4 times, corresponding to acting with
lattice rotations. Symmetric configurations are counted 2 times or 1 time.

4) We also need (crucially) to take into account the “Milnor” multiplicity.



Figure 14: The smallest SOP with multiplicity two on a square lattice, with bound-

ary code SSSSLSSLSSLSRRRRSLSSLSSLSSSSLSSLSSLSRRRRSLSSLSSL, 2n = 48

and p = 31. This configuration is Ze-symmetric (invariant under a 180 de-
gree rotation) and has multiplicity 2. It is thus counted 2 X 2 = 4 times in

the generating function. Similar Milnor configurations with no symmetry can be
casily obtained, for instance by adding a face at the bottom, with new bound-
ary code SSSSLSSLSSLSRRRRSLSSLSSLSSSSLSSLSSLSRRRRSLSSLRLLRL (the
added sequence is in boldface). Such a configuration must be counted 8 times in the
generating funetion.



Generating function and scaling
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Precise conjecture for the SOP model:
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In JT gravity coupled to conformal matter of central charge c,
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There is a c=0 barrier (analogous to the c=1 barrier in Liouville)
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Long distance properties, quantum version of the isoperimetric inequalities
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No such inequality in the case of positive curvature (see below).
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One step in the construction of a metric of constant positive curvature on the
disk having arbitrarily large area and arbitrarily small boundary length.




So one expects large area to be highly improbable in negative curvature,
improbable in zero curvature and ubiquitous in positive curvature.

This yields quantum versions of the isoperimetric inequalities.

Conjecture 4.5. The area distribution of the SOP model, i.e. pure JT gravity in
zero curvature, decays exponentially at large area, with

In p‘gfp(/l) P -kA/B,, (4.118)

where k is a strictly positive numerical constant.

Conjecture 4.6. The area distribution of JT gravity in zero curvature coupled to
¢ < 0 conformal matter, which has a critical exponent v given by Eq. (4.57), has the
asymptotic behaviour
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As a consequence, the zero curvature theory exists only for a range of
cosmological constants, A > A, for A. <0.

W(A) = W(0) /O T p(A)e A dA



Conjecture 6.1. The area distribution of JT gravity in negoative curvature coupled
to ¢ < 0 conformal matter, with critical exponent v given by Eq. (4.57), has the
asymptotic behaviour
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Conjecture 6.5. The area distribution of JT gravity in positive curvature coupled
to ¢ < 0 conformal matter, with critical exponent v given by Eq. (4.57), has the
asymptotic behaviouwr
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where k) is a strictly positive function of the dimensionless parameter 3, /L and x} a
critical exponent, which is a strictly increasing function of v satisfying lim _ ., + x; =
and lim, ,y- ¥, = +00. ’



Emergence of the Schwarzian description and ballistic behaviour

The usual smooth length parameter ¢ used in the standard Schwarzian
description is an effective macroscopic parameter. On short scales, the
boundary is a fractal and it does not have a smooth length.

The smooth macroscopic length parameter ¢ can thus in principle be
expressed in terms of the microscopic parameters.

The emergence of this parameter is related to the fundamental property of
hyperbolic space, that the area grows exponentially with the geodesic radius.

In a lattice formulation, this is reflected by the fact that the number of lattice
sites that are accessible at a given distance of a given site grows exponentially
with the distance (only quadratically in flat space, or not at all in positive
curvature). 6




Consider now a Brownian particule in hyperbolic space (an interesting
simplified model). There will be two regimes.

Smallﬁ:dw\/g
Large 6 :d ~ /L

A smooth length emerges, with d proportional to the number of microscopic
steps in the random motion.

In JT gravity, one can argue that {0 ~ 5(’A’L) v



Continuum/probabilistic approach

Method: describe the metric by going to conformal gauge.

g=e*"f

Puzzle: the constant curvature constraint imposes that
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Imposing Dirichlet or Neumann boundary conditions would kill all the
degrees of freedom. One must work with free boundary conditions.

A fundamental mathematical theorem ensures that, for a given boundary
Liouville field, the bulk field is uniquely determined (in flat space, this is the
usual statement about the uniqueness of harmonic functions on the disk, with
prescribed value on the boundary; it also works in negative curvature; it is
more subtle in positive curvature).

Fundamental degree of freedom: 0= Yoy



2= 2 + 2y
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2., solves the Liouville equation is depends only on the boundary value o

So “all” one needs to do is to construct a suitable (PSL(2,R)-invariant)
probability measure on the space of boundary Liouville fields. This will
automatically yield a measure on the space of constant curvature metrics or,
equivalently, on the space of self-overlapping polygons!



Such measures are not unique.

But we can follow the usual path integral physics lore to construct one (the
starting point is heuristic, the end point is rigorous).

The conjecture is that the measure obtained in this way matches with the
one obtained by taking the continuum limit of the Self-Overlapping Polygon

model (with the non-uniform measure).

This yields highly non-trivial predictions. Similar to the map counting/
Liouville theory relation in ordinary 2D quantum gravity.

We have tested these ideas semi-classically (with S. Chaudhuri).



PSL(2,R)-invariant measure (flat case)
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This action predicts that
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almost surely, implying that the boundary field is distribution-valued (very

unlike a normal one-dimensional quantum variable g, which would have
modes going like 1/n and would be continuous).

The bulk field is still perfectly smooth

>, = Z Unp|"|em9 if o= Z o, e’

nez nez



This is how the pictures for typical configurations were obtained.

The boundary field is a one dimensional log-correlated scalar field. Well-
studied by mathematicians and related to standard Liouville technology
(vertex operators etc.). One can then use arguments a la DDK to derive
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One may also be able to adapt the strategies used in DOZZ, FZZT and
mathematicians to derive exact results. Tbc.
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Thank you for your attention !



