Continued fractions using a Laguerre digraph interpretation of the Foata–Zeilberger bijection and its variants

Bishal Deb (he/him)

Sorbonne Université and Université Paris-Cité, CNRS, LPSM

September 23, 2024 Laboratoire Bordelais de Recherche en Informatique

arxiv: 2304.14487

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つくぐ

Structure

Ontinued fractions and enumerative combinatorics

- Classical continued fractions
- Ø Sokal–Zeng's results for factorials
- **③** D.-Sokal's results for Genocchi and median Genocchi numbers
- Onjectures
- Proof overview of existing results
 - Is Flajolet's combinatorial interpretation
 - Ø Foata–Zeilberger bijection

What's new

- Laguerre digraphs
- O New interpretation of the FZ bijection
- The story continues ...

Structure

Ontinued fractions and enumerative combinatorics

- Classical continued fractions
- Ø Sokal–Zeng's results for factorials
- O.-Sokal's results for Genocchi and median Genocchi numbers
- Onjectures

Proof overview of existing results

- Flajolet's combinatorial interpretation
- Ø Foata–Zeilberger bijection

O What's new

- Laguerre digraphs
- ONE New interpretation of the FZ bijection

The story continues . . .

Given sequence $(a_n)_{n\geq 0}$

Given sequence $(a_n)_{n\geq 0}$

want to write

$$\sum_{n=0}^{\infty} a_n t^n = \frac{1}{1 - \frac{\alpha_1 t}{1 - \frac{\alpha_2 t}{1 - \ddots}}}$$

Given sequence $(a_n)_{n\geq 0}$

want to write

$$\sum_{n=0}^{\infty} a_n t^n = \frac{1}{1 - \frac{\alpha_1 t}{1 - \frac{\alpha_2 t}{1 - \ddots}}}$$

Stieltjes-type continued fractions (S-fractions)

This line of thought goes back to Euler

§. 22. Quemadmodum autem huiusmodi. fracționum continuarum valor fit inveftigandus, albi oftendi: Scilicet cum fingulorum denominaroum partes integrae fint vaitates, foli numeratores in computum veniunt; fit ergo $x=\tau$, atque inveftigațio fammae A fequenti modo influetur:

num.1, 1, 2, 2, 3, 3, 4, 4, 5, 5, etc:

Fractiones nimirum hic exhibitae continuo propius ad verum valorem ipfius A accedunt, et quidem alternatim eo funt maiores et minores; ita vt fit:

Tom. V. Nou. Com. Ff

A>

< □ > < □ > < □ > < □ > < □ >

Euler (1760)

Jacobi-type continued fractions

J-fractions in short

J-fraction for n!

$$\sum_{n=0}^{\infty} n! t^n = \frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \ddots}}}$$

where

$$\gamma_n = 2n + 1$$
$$\beta_n = n^2$$

Sokal-Zeng's (2022) reverse program

Start with

$$\sum_{n=0}^{\infty} n! t^n = \frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \ddots}}}$$

where

$$\gamma_n = 2n+1$$

$$\beta_n = n^2$$

・ロト・日本・モート ヨー うへの

Sokal-Zeng's (2022) reverse program

Start with

$$\sum_{n=0}^{\infty} n! t^n = \frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \ddots}}}$$

where

$$\begin{array}{rcl} \gamma_n &=& 2n+1\\ \beta_n &=& n^2 \end{array}$$

Instead consider

$$\gamma_0 = w_0 \gamma_n = [x_2 + (n-1)u_2] + [y_2 + (n-1)v_2] + w_n \beta_n = [x_1 + (n-1)u_1] [y_1 + (n-1)v_1]$$

Sokal-Zeng's (2022) reverse program

Start with

$$\sum_{n=0}^{\infty} n! t^n = \frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \ddots}}}$$

where

$$\begin{array}{rcl} \gamma_n &=& 2n+1\\ \beta_n &=& n^2 \end{array}$$

Instead consider

$$\gamma_0 = w_0$$

$$\gamma_n = [x_2 + (n-1)u_2] + [y_2 + (n-1)v_2] + w_n$$

$$\beta_n = [x_1 + (n-1)u_1] [y_1 + (n-1)v_1]$$

Question

Find the 10 permutation statistics $x_1, x_2, y_1, y_2, u_1, u_2, v_1, v_2, w_0, (w_n)_{n \ge 1}$

"First" (Cycles not counted)	"Second" (Cycles counted)			
	Conjecture : J-fraction with 10-statistics			
J-fraction with 10-statistics				
	· 《ロ》《聞》《意》《意》 語 ののの			

"First" (Cycles not counted)	"Second" (Cycles counted)				
J-fraction with 10-statistics	Conjecture: J-fraction with 10-statistics ↓ J-fraction with 9-statistics				
	(ロ) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日				

"First" (Cycles not counted)	"Second" (Cycles counted)
J-fraction with 10-statistics ↑ p,q-generalisation: J-fraction with 18 statistics	Conjecture: J-fraction with 10-statistics ↓ J-fraction with 9-statistics ↑ p, q-generalisation: J-fraction with 15 statistics

"First" (Cycles not counted)	"Second" (Cycles counted)
J-fraction with 10-statistics \uparrow p, q-generalisation: J-fraction with 18 statistics \uparrow	Conjecture: J-fraction with 10-statistics ↓ J-fraction with 9-statistics ↑ p, q-generalisation: J-fraction with 15 statistics ↑

《曰》《聞》《臣》《臣》 三臣

"First" (Cycles not counted)	"Second" (Cycles counted)		
J-fraction with 10-statistics ↑ p, q-generalisation: J-fraction with 18 statistics ↑ Master J-fraction: four infinite 2-parameter families one infinite 1-parameter family	Conjecture: J-fraction with 10-statistics ↓ J-fraction with 9-statistics ↑ p, q-generalisation: J-fraction with 15 statistics ↑ Master J-fraction: three infinite 2-parameter families two infinite 1-parameter family and one statistic for counting cycles		
Proof: Foata–Zeilberger bijection (1990)	Proof: Biane bijection (1993)		

At around the same time, Blitvić–Steingrímsson (2021) independently came up with a 14-variable continued fraction

At around the same time, Blitvić–Steingrímsson (2021) independently came up with a 14-variable continued fraction Also Elizalde (2017)

At around the same time, Blitvić–Steingrímsson (2021) independently came up with a 14-variable continued fraction Also Elizalde (2017)

They later discovered that Randrianarivony (1998) had a 17-variable continued fraction.

Results and conjecture for factorials

For a permutation σ , compare each *i* with $\sigma(i)$ and $\sigma^{-1}(i)$:

For a permutation σ , compare each *i* with $\sigma(i)$ and $\sigma^{-1}(i)$:

◆□ > ◆母 > ◆臣 > ◆臣 > ○臣 ○ の < @

13150

- cycle valley $\sigma^{-1}(i) > i < \sigma(i)$
- cycle peaks $\sigma^{-1}(i) < i > \sigma(i)$
- cycle double rise $\sigma^{-1}(i) < i < \sigma(i)$
- cycle double fall $\sigma^{-1}(i) > i > \sigma(i)$
- fixed point $i = \sigma(i) = \sigma^{-1}(i)$

- i is record if for every j < i we have $\sigma(j) < \sigma(i)$ left-to-right-maxima
- i is antirecord if for every j > i we have $\sigma(j) > \sigma(i)$ right-to-left-minima

- i is record if for every j < i we have $\sigma(j) < \sigma(i)$ left-to-right-maxima
- i is antirecord if for every j > i we have $\sigma(j) > \sigma(i)$ right-to-left-minima
- Each i is one of the following four types:

- i is record if for every j < i we have $\sigma(j) < \sigma(i)$ left-to-right-maxima
- i is antirecord if for every j > i we have $\sigma(j) > \sigma(i)$ right-to-left-minima
- Each i is one of the following four types:
 - rar record-antirecord
 - erec exclusive record
 - earec exclusive antirecord
 - nrar neither record-antirecord

- i is record if for every j < i we have $\sigma(j) < \sigma(i)$ left-to-right-maxima
- i is antirecord if for every j > i we have $\sigma(j) > \sigma(i)$ right-to-left-minima
- Each i is one of the following four types:
 - rar record-antirecord
 - erec exclusive record
 - earec exclusive antirecord
 - nrar neither record-antirecord

Each i is one of the following ten (not 20) types:

Each i is one of the following ten (not 20) types:

	cpeak	cval	cdrise	cdfall	fix
erec		ereccval	ereccdrise		
earec	eareccpeak			eareccdfall	
rar					rar
nrar	nrcpeak	nrcval	nrcdrise	nrcdfall	nrfix

Continued fractions counting permutation statistics

Consider 10-variable polynomials

$$\begin{split} P_n(x_1, x_2, y_1, y_2, u_1, u_2, v_1, v_2, w, z) &= \\ & \sum_{\sigma \in \mathfrak{S}_n} x_1^{\text{eareccpeak}(\sigma)} x_2^{\text{eareccdfall}(\sigma)} y_1^{\text{ereccval}(\sigma)} y_2^{\text{ereccdrise}(\sigma)} z^{\text{rar}(\sigma)} \times \\ & u_1^{\text{nrcpeak}(\sigma)} u_2^{\text{nrcdfall}(\sigma)} v_1^{\text{nrcval}(\sigma)} v_2^{\text{nrcdrise}(\sigma)} w^{\text{nrfix}(\sigma)} \end{split}$$

Continued fractions counting permutation statistics

Consider 10-variable polynomials

$$\begin{split} P_n(x_1, x_2, y_1, y_2, u_1, u_2, v_1, v_2, w, z) &= \\ & \sum_{\sigma \in \mathfrak{S}_n} x_1^{\text{earcccpeak}(\sigma)} x_2^{\text{earcccdfall}(\sigma)} y_1^{\text{ercccval}(\sigma)} y_2^{\text{ercccdrise}(\sigma)} z^{\text{rar}(\sigma)} \times \\ & u_1^{\text{nrcpeak}(\sigma)} u_2^{\text{nrccdfall}(\sigma)} v_1^{\text{nrcval}(\sigma)} v_2^{\text{nrcdrise}(\sigma)} w^{\text{nrfix}(\sigma)} \end{split}$$

Theorem (Sokal–Zeng (2022) First J-fraction for permutations)

$$= \frac{\sum_{n=0}^{\infty} P_n(x_1, x_2, y_1, y_2, u_1, u_2, v_1, v_2, w, z)t^n}{\frac{1}{1 - z \cdot t - \frac{x_1 y_1 \cdot t^2}{1 - (x_2 + y_2 + w) \cdot t - \frac{(x_1 + u_1)(y_1 + v_1) \cdot t^2}{1 - ((x_2 + u_2) + (y_2 + v_2) + w) \cdot t - \frac{(x_1 + 2u_1)(y_1 + 2v_1) \cdot t^2}{1 - \ddots}}}$$

Continued fractions counting permutation statistics

Consider 10-variable polynomials

$$\begin{split} P_n(x_1, x_2, y_1, y_2, u_1, u_2, v_1, v_2, w, z) = \\ & \sum_{\sigma \in \mathfrak{S}_n} x_1^{\text{eareccpeak}(\sigma)} x_2^{\text{eareccdfall}(\sigma)} y_1^{\text{ereccval}(\sigma)} y_2^{\text{ereccdrise}(\sigma)} z^{\text{rar}(\sigma)} \times \\ & u_1^{\text{nrcpeak}(\sigma)} u_2^{\text{nrcdfall}(\sigma)} v_1^{\text{nrcval}(\sigma)} v_2^{\text{nrcdrise}(\sigma)} w^{\text{nrfix}(\sigma)} \end{split}$$

Theorem (Sokal–Zeng (2022) First J-fraction for permutations)

$$= \frac{\sum_{n=0}^{\infty} P_n(x_1, x_2, y_1, y_2, u_1, u_2, v_1, v_2, w, z)t^n}{\frac{1}{1 - z \cdot t - \frac{x_1 y_1 \cdot t^2}{1 - (x_2 + y_2 + w) \cdot t - \frac{(x_1 + u_1)(y_1 + v_1) \cdot t^2}{1 - ((x_2 + u_2) + (y_2 + v_2) + w) \cdot t - \frac{(x_1 + 2u_1)(y_1 + 2v_1) \cdot t^2}{1 - \ddots}}}$$

Proof uses the Foata-Zeilberger bijection (1990)

Can we count cycles as well?

Consider 11-variable polynomials

$$\begin{split} P_n(x_1, x_2, y_1, y_2, u_1, u_2, v_1, v_2, w, z) = \\ & \sum_{\sigma \in \mathfrak{S}_n} x_1^{\text{eareccpeak}(\sigma)} x_2^{\text{eareccdfall}(\sigma)} y_1^{\text{ereccval}(\sigma)} y_2^{\text{ereccdrise}(\sigma)} z^{\text{rar}(\sigma)} \times \\ & u_1^{\text{nrcpeak}(\sigma)} u_2^{\text{nrcdfall}(\sigma)} v_1^{\text{nrcval}(\sigma)} v_2^{\text{nrcdrise}(\sigma)} w^{\text{nrfix}(\sigma)} \lambda^{\text{cyc}(\sigma)} \end{split}$$
Can we count cycles as well?

Consider 11-variable polynomials

$$P_{n}(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z) = \sum_{\sigma \in \mathfrak{S}_{n}} x_{1}^{\text{eareccpeak}(\sigma)} x_{2}^{\text{eareccdfall}(\sigma)} y_{1}^{\text{ereccval}(\sigma)} y_{2}^{\text{ereccdrise}(\sigma)} z^{\text{rar}(\sigma)} \times u_{1}^{\text{nrcpeak}(\sigma)} u_{2}^{\text{nrcdfall}(\sigma)} v_{1}^{\text{nrcval}(\sigma)} v_{2}^{\text{nrcdrise}(\sigma)} w^{\text{nrfix}(\sigma)} \lambda^{\text{cyc}(\sigma)}$$

No nice J-fraction!

Can we count cycles as well?

Consider 11-variable polynomials

$$P_{n}(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z) = \sum_{\sigma \in \mathfrak{S}_{n}} x_{1}^{\text{eareccpeak}(\sigma)} x_{2}^{\text{eareccdfall}(\sigma)} y_{1}^{\text{ereccval}(\sigma)} y_{2}^{\text{ereccdrise}(\sigma)} z^{\text{rar}(\sigma)} \times u_{1}^{\text{nrcpeak}(\sigma)} u_{2}^{\text{nrcdfall}(\sigma)} v_{1}^{\text{nrcval}(\sigma)} v_{2}^{\text{nrcdrise}(\sigma)} w^{\text{nrfix}(\sigma)} \lambda^{\text{cyc}(\sigma)}$$

No nice J-fraction! But can obtain J-fraction by specialising $y_1 = v_1$:

Can we count cycles as well?

Consider 11-variable polynomials

$$P_{n}(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z) = \sum_{\sigma \in \mathfrak{S}_{n}} x_{1}^{\text{eareccpeak}(\sigma)} x_{2}^{\text{eareccdfall}(\sigma)} y_{1}^{\text{ereccval}(\sigma)} y_{2}^{\text{ereccdrise}(\sigma)} z^{\text{rar}(\sigma)} \times u_{1}^{\text{nrcpeak}(\sigma)} u_{2}^{\text{nrcdfall}(\sigma)} v_{1}^{\text{nrcval}(\sigma)} v_{2}^{\text{nrcdrise}(\sigma)} w^{\text{nrfix}(\sigma)} \lambda^{\text{cyc}(\sigma)}$$

No nice J-fraction! But can obtain J-fraction by specialising $y_1 = v_1$:

Conjecture (Sokal–Zeng (2022))

$$= \frac{\sum_{n=0}^{\infty} P_n(x_1, x_2, y_1, y_2, u_1, u_2, y_1, v_2, w, z, \lambda) t^n}{1 - \lambda z \cdot t - \frac{\lambda x_1 y_1 \cdot t^2}{1 - (x_2 + y_2 + \lambda w) \cdot t - \frac{(\lambda + 1)(x_1 + u_1)y_1 \cdot t^2}{1 - ((x_2 + v_2) + (y_2 + v_2) + \lambda w) \cdot t - \frac{(\lambda + 2)(x_1 + 2u_1)y_1 \cdot t^2}{1 - \ddots}}}$$

They could only prove with two specialisations $y_1 = v_1$ and $y_2 = v_2$

They could only prove with two specialisations $y_1 = v_1$ and $y_2 = v_2$ Second J-fraction for permutations

They could only prove with two specialisations $y_1 = v_1$ and $y_2 = v_2$ Second J-fraction for permutations

Used Biane bijection (1993).

They could only prove with two specialisations $y_1 = v_1$ and $y_2 = v_2$ Second J-fraction for permutations

Used Biane bijection (1993).

Genocchi and median Genocchi numbers

The Genocchi numbers are given by

$$t \tan\left(\frac{t}{2}\right) = \sum_{n=0}^{\infty} g_n \frac{t^{2n+2}}{(2n+2)!}$$

The Genocchi numbers are given by

$$t \tan\left(\frac{t}{2}\right) = \sum_{n=0}^{\infty} g_n \frac{t^{2n+2}}{(2n+2)!}$$

The first few numbers are 1, 1, 3, 17, 155, 2073, ...

Genocchi numbers:

D-e-semiderangements

$$g_n = \#\{\sigma \in \mathfrak{S}_{2n} | 2i > \sigma(2i) \text{ and } 2i - 1 \le \sigma(2i - 1)\}$$

D-o-semiderangements

$$= \#\{\sigma \in \mathfrak{S}_{2n} | 2i \ge \sigma(2i) \text{ and } 2i - 1 < \sigma(2i - 1)\}$$

Genocchi numbers:

D-e-semiderangements $g_n = \#\{\sigma \in \mathfrak{S}_{2n} | 2i > \sigma(2i) \text{ and } 2i - 1 \le \sigma(2i - 1)\}$ D-o-semiderangements $= \#\{\sigma \in \mathfrak{S}_{2n} | 2i \ge \sigma(2i) \text{ and } 2i - 1 < \sigma(2i - 1)\}$

Median Genocchi numbers:

D-permutations (introduced by Lazar and Wachs (2019)) $h_{n+1} = |\mathfrak{D}_{2n}| = \#\{\sigma \in \mathfrak{S}_{2n} | 2i \ge \sigma(2i) \text{ and } 2i - 1 \le \sigma(2i - 1)\}$ D-derangements $h_n = \#\{\sigma \in \mathfrak{S}_{2n} | 2i > \sigma(2i) \text{ and } 2i - 1 < \sigma(2i - 1)\}$ Genocchi numbers:

D-e-semiderangements $g_n = \#\{\sigma \in \mathfrak{S}_{2n} | 2i > \sigma(2i) \text{ and } 2i - 1 \le \sigma(2i - 1)\}$ D-o-semiderangements $= \#\{\sigma \in \mathfrak{S}_{2n} | 2i \ge \sigma(2i) \text{ and } 2i - 1 < \sigma(2i - 1)\}$

Median Genocchi numbers:

D-permutations (introduced by Lazar and Wachs (2019)) $h_{n+1} = |\mathfrak{D}_{2n}| = \#\{\sigma \in \mathfrak{S}_{2n} | 2i \ge \sigma(2i) \text{ and } 2i - 1 \le \sigma(2i - 1)\}$ D-derangements $h_n = \#\{\sigma \in \mathfrak{S}_{2n} | 2i > \sigma(2i) \text{ and } 2i - 1 < \sigma(2i - 1)\}$

D — Dumont-like

The once-shifted median Genocchi numbers h_{n+1} have the following Thron-type continued fraction

Story for Genocchi and median Genocchi

D.-Sokal (2024):

Story for Genocchi and median Genocchi

D.-Sokal (2024):

"First" (Cycles not counted)	"Second" (Cycles counted)
	Conjecture : 0-T-fraction with 12-statistics
	With 12-Statistics
0-T-fraction with 12-statistics	0-T-fraction with 12-statistics
↑	↑
p,q-generalisation:	$m{p},m{q}$ -generalisation:
0-T-fraction with 22 statistics	0-T-fraction with 21 statistics
ſ	Î
Master T-fraction:	Master T-fraction:
four infinite 2-parameter families	three infinite 2-parameter families,
two infinite 1-parameter family	three infinite 1-parameter families,
	and one statistic for counting cycles
Proof:	Proof:
FZ-like bijection	Biane-like bijection
Variant forms with	

slightly different statistics

Randrianarivony–Zeng conjecture (1996)

Define the polynomials

where
$$G_n(x,y,\bar{x},\bar{y}) = \sum_{\sigma \in \mathfrak{D}_{2n}^\circ} x^{\operatorname{comi}(\sigma)} y^{\operatorname{lema}(\sigma)} \bar{x}^{\operatorname{cemi}(\sigma)} \bar{y}^{\operatorname{remi}(\sigma)}$$

Randrianarivony–Zeng conjecture (1996)

Define the polynomials

$$G_n(x, y, \bar{x}, \bar{y}) = \sum_{\sigma \in \mathfrak{D}_{2n}^{\circ}} x^{\operatorname{comi}(\sigma)} y^{\operatorname{lema}(\sigma)} \bar{x}^{\operatorname{cemi}(\sigma)} \bar{y}^{\operatorname{remi}(\sigma)}$$

where

- comi odd cycle minima,
- lema left-to-right maxima whose value is even
- cemi even cycle minima
- remi right-to-left minima whose value is even

Randrianarivony-Zeng conjecture (1996)

Define the polynomials

$$G_n(x, y, \bar{x}, \bar{y}) = \sum_{\sigma \in \mathfrak{D}_{2n}^{\circ}} x^{\operatorname{comi}(\sigma)} y^{\operatorname{lema}(\sigma)} \bar{x}^{\operatorname{cemi}(\sigma)} \bar{y}^{\operatorname{remi}(\sigma)}$$

where

- comi odd cycle minima,
- lema left-to-right maxima whose value is even
- cemi even cycle minima
- remi right-to-left minima whose value is even

Conjecture

The ogf of the polynomials $G_n(x,y,\bar{x},\bar{y})$ has the following S-fraction

$$\sum_{n=0}^{\infty} G_n(x, y, \bar{x}, \bar{y}) t^n = \frac{1}{1 - \frac{xyt}{1 - \frac{1(\bar{x} + \bar{y})t}{1 - \frac{1(\bar{x} + \bar{y})t}{1 - \frac{2(\bar{x} + \bar{y} + 1)t}{1 - \frac{2(\bar{x} + \bar{y} + 1)t}{1 - \frac{2(\bar{x} + \bar{y} + 2)t}}}}$$
(1)

24 | 50

Plot twist for Sokal–Zeng conjecture

"First" (Cycles not counted)	"Second" (Cycles counted)
	Conjecture: J-fraction with 10 statistics
J-fraction with 10 statistics	J-fraction with 9 statistics
p, q-generalisation:	p, q-generalisation:
Master I fraction:	Arraction with 15 statistics Arraction
four infinite 2-parameter families	three infinite 2-parameter families
	and one statistic for counting cycles

Proof: Foata–Zeilberger bijection (1990)

Proof:

Biane bijection (1993)

Conjectures of D.-Sokal, Randrianarivony-Zeng

"First" (Cycles not counted)	"Second" (Cycles counted)
0-T-fraction with 12 statistics p, q-generalisation: 0-T-fraction with 22 statistics ↑ Master T-fraction: four infinite 2-parameter families two infinite 1-parameter families Were families	Conjecture: 0-T-fraction with 12 statistics 0-T-fraction with 12 statistics <i>p</i> , <i>q</i> -generalisation 0-T-fraction with 21 statistics Master T-fraction: three infinite 2-parameter families, three infinite 1-parameter families, and one statistic for counting cycles Marcellike bijection
Variant forms	Variant forms ⇒ Randrianarivony–Zeng (1996) S-fraction with 4 statistics

Pan–Zeng ('23) came up with multivariate continued fractions for other objects enumerated by Genocchi numbers also introduced in work of Lazar's PhD thesis

Structure

Ontinued fractions and enumerative combinatorics

- Classical continued fractions
- Ø Sokal-Zeng's results for factorials
- 3 D.-Sokal's results for Genocchi and median Genocchi numbers
- Onjectures

Proof overview of existing results

- Ision Flajolet's combinatorial interpretation
- Poata–Zeilberger bijection

What's new

- Laguerre digraphs
- ONE New interpretation of the FZ bijection

The story continues . . .

Assign weights:

- 🗡 : 1
- \rightarrow from height $i \rightarrow i$: γ_i
- \searrow from height $i \rightarrow (i-1)$: β_i

Assign weights:

- 🗡 : 1
- \rightarrow from height $i \rightarrow i$: γ_i
- \searrow from height $i \rightarrow (i-1)$: β_i

Assign weights:

- 🗡 : 1
- \rightarrow from height $i \rightarrow i$: γ_i
- \searrow from height $i \rightarrow (i-1)$: β_i

J-fraction

J-fraction

$$\frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\cdot}}} = \sum_{n=0}^{\infty} a_n t^n$$

J-fraction

$$\frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\ddots}}} = \sum_{n=0}^{\infty} a_n t^n$$

Theorem (Flajolet '80)

The a_n are weighted sum of Motzkin paths with n steps.

J-fraction

$$\frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\ddots}}} = \sum_{n=0}^{\infty} a_n t^n$$

Theorem (Flajolet '80)

The a_n are weighted sum of Motzkin paths with n steps.

- Stieltjes-type continued fractions weighted Dyck paths (Flajolet '80)
- Thron-type continued fractions weighted Schröder paths (Oste-Van der Jeugt (2015), Fusy-Guitter(2017), Josuat-Vergès (2018), Sokal (unpublished))

J-fraction

$$\frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\ddots}}} = \sum_{n=0}^{\infty} a_n t^n$$

Theorem (Flajolet '80)

The a_n are weighted sum of Motzkin paths with n steps.

- Stieltjes-type continued fractions weighted Dyck paths (Flajolet '80)
- Thron-type continued fractions weighted Schröder paths (Oste-Van der Jeugt (2015), Fusy-Guitter(2017), Josuat-Vergès (2018), Sokal (unpublished))

Gateway for proving continued fractions using bijective combinatorics :-D

Foata-Zeilberger bijection

excedance indices $F = \{i \in \sigma : \sigma(i) > i\} = \mathsf{Cdrise} \cup \mathsf{Cval}$
excedance indices $F = \{i \in \sigma : \sigma(i) > i\} = \text{Cdrise} \cup \text{Cval}$ excedance values $F' = \{i \in \sigma : i > \sigma^{-1}(i)\} = \text{Cdrise} \cup \text{Cpeak}$

excedance indices
$$F = \{i \in \sigma : \sigma(i) > i\} = \text{Cdrise} \cup \text{Cval}$$

excedance values $F' = \{i \in \sigma : i > \sigma^{-1}(i)\} = \text{Cdrise} \cup \text{Cpeak}$
antiexcedance indices $G = \{i \in \sigma : \sigma(i) < i\} = \text{Cdfall} \cup \text{Cpeak}$

$$= \{i \in \sigma : \sigma(i) > i\} = Cdrise \cup Cval \\ = \{i \in \sigma : i > \sigma^{-1}(i)\} = Cdrise \cup Cpeak \\ = \{i \in \sigma : \sigma(i) < i\} = Cdfall \cup Cpeak \\ = \{i \in \sigma : i < \sigma^{-1}(i)\} = Cdfall \cup Cval \\ = \{i \in \sigma : i = \sigma(i)\} = Fix \end{cases}$$

excedance indices Fexcedance values F'antiexcedance indices Gantiexcedance values G'

fixed points H

=	$\{i \in \sigma : \sigma(i) > i\} = Cdrise \cup Cval$
=	$\{i \in \sigma : i > \sigma^{-1}(i)\} = Cdrise \cup Cpeak$
=	$\{i \in \sigma : \sigma(i) < i\} = Cdfall \cup Cpeak$
=	$\{i \in \sigma : i < \sigma^{-1}(i)\} = Cdfall \cup Cval$
=	$\{i \in \sigma : i = \sigma(i)\} = Fix$
	= = = =

A permutation can be fully described the following data:

• Sets F, F', G, G', H

excedance indices $F = \{i \in \sigma : \sigma(i) > i\} = \text{Cdrise} \cup \text{Cval}$ excedance values $F' = \{i \in \sigma : i > \sigma^{-1}(i)\} = \text{Cdrise} \cup \text{Cpeak}$ antiexcedance indices $G = \{i \in \sigma : \sigma(i) < i\} = \text{Cdfall} \cup \text{Cpeak}$ antiexcedance values $G' = \{i \in \sigma : i < \sigma^{-1}(i)\} = \text{Cdfall} \cup \text{Cval}$ fixed points $H = \{i \in \sigma : i = \sigma(i)\} = \text{Fix}$

◆□ > ◆母 > ◆臣 > ◆臣 > ○臣 ○ の < @

32150

A permutation can be fully described the following data:

- Sets *F*, *F*', *G*, *G*', *H*
- $\sigma|_F : F \to F'$
- $\sigma|_G: G \to G'$

 $\sigma \mapsto (\omega, \xi)$

$$\sigma \mapsto (\omega, \xi)$$

where

• ω is a Motzkin path, where the level steps come in three different colours (red, blue, green)

$$\sigma \mapsto (\omega, \xi)$$

where

ω is a Motzkin path, where the level steps come in three different colours (red, blue, green)
 Correspond to F, F', G, G', H

$$\sigma \mapsto (\omega, \xi)$$

where

- ω is a Motzkin path, where the level steps come in three different colours (red, blue, green)
 Correspond to F, F', G, G', H
- $\xi = (\xi_1, \dots, \xi_n)$ are labels on the steps of the Motzkin paths

$$\sigma \mapsto (\omega, \xi)$$

where

- ω is a Motzkin path, where the level steps come in three different colours (red, blue, green)
 Correspond to F, F', G, G', H
- $\xi = (\xi_1, \dots, \xi_n)$ are labels on the steps of the Motzkin paths Correspond to $\sigma|_F : F \to F'$ and $\sigma|_G : G \to G'$

- If i is a cycle valley, step i is \nearrow
- If i is a cycle peak, step i is \searrow
- If i is a cycle double rise, cycle double fall or fixed, step i is →, → or
 → respectively.

For $i \in [n]$

$$\xi_i = \begin{cases} \#\{j: j < i \text{ and } \sigma(j) > \sigma(i)\} & \text{if } \sigma(i) > i & \text{if } i \in \text{Cval} \cup \text{Cdrise} \\ \#\{j: j > i \text{ and } \sigma(j) < \sigma(i)\} & \text{if } \sigma(i) < i & \text{if } i \in \text{Cpeak} \cup \text{Cdfall} \\ 0 & \text{if } \sigma(i) = i & \text{if } i \in \text{Fix} \end{cases}$$

An example

Let
$$\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$$
.
- Cval = $\{1,3\}$ - Cpeak = $\{7,9\}$ - Cdrise = $\{5\}$ - Cdfall = $\{2,6,8\}$
- Fix = $\{4\}$

An example

Let
$$\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$$
.
- Cval = {1,3} - Cpeak = {7,9} - Cdrise = {5} - Cdfall = {2,6,8}

- $\mathsf{Fix} = \{4\}$

The Motzkin path $\boldsymbol{\omega}$ is

An example

Let $\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$. - Cval = $\{1,3\}$ - Cpeak = $\{7,9\}$ - Cdrise = $\{5\}$ - Cdfall = $\{2,6,8\}$

- $Fix = \{4\}$

 $\frac{i \in \sigma(i)}{\sigma(i)}$

The Motzkin path ω is

The labels ξ and the sets F, F', G, G' are:

3				,	, ,					
F	1	3	5		$i \in G$	2	6	7	8	9
$\in F'$	7	5	9		$\sigma(i) \in G'$	1	2	6	3	8
i	0	1	0		ξ_i	0	0	1	0	0

Structure

Ontinued fractions and enumerative combinatorics

- Classical continued fractions
- Ø Sokal-Zeng's results for factorials
- () D.-Sokal's results for Genocchi and median Genocchi numbers
- Onjectures
- Proof overview of existing results
 - In Flajolet's combinatorial interpretation
 - Poata-Zeilberger bijection

What's new

- Laguerre digraphs
- O New interpretation of the FZ bijection

The story continues . . .

A Laguerre digraph of size n is a directed graph on vertex set $\{1, \ldots, n\}$ where each vertex has indegree 0 or 1 and outdegree 0 or 1.

A Laguerre digraph of size n is a directed graph on vertex set $\{1, \ldots, n\}$ where each vertex has indegree 0 or 1 and outdegree 0 or 1.

Example:

.41 >2 $9 \rightarrow 6 \rightarrow 10$

A Laguerre digraph of size n is a directed graph on vertex set $\{1, \ldots, n\}$ where each vertex has indegree 0 or 1 and outdegree 0 or 1.

Example:

.41 >2 $0 \rightarrow 6 \rightarrow 10$

Connected components

- Directed cycle
- Directed paths

A Laguerre digraph of size n is a directed graph on vertex set $\{1, \ldots, n\}$ where each vertex has indegree 0 or 1 and outdegree 0 or 1.

Example:

.41 >2 $9 \rightarrow 6 \rightarrow 10$

Connected components

- Directed cycle
- Directed paths

Generalise permutations

An equivalent object with a different definition was introduced by Foata–Strehl (1984) — Laguerre configurations

An equivalent object with a different definition was introduced by Foata–Strehl (1984) — Laguerre configurations

Other authors often use partial permutations

An equivalent object with a different definition was introduced by Foata–Strehl (1984) — Laguerre configurations

Other authors often use partial permutations

Laguerre digraphs after Sokal (2022)

At each stage insert edges $i \rightarrow \sigma(i)$

At each stage insert edges $i \rightarrow \sigma(i)$ in the following order:

Stage (a): $i \in H$ (fixed points) in increasing order

Stage (b): $i \in G$ (antiexcedances) in increasing order

Stage (c): $i \in F$ (excedances) in decreasing order

At each stage insert edges $i \rightarrow \sigma(i)$ in the following order:

Stage (a): $i \in H$ (fixed points) in increasing order

Stage (b): $i \in G$ (antiexcedances) in increasing order

Stage (c): $i \in F$ (excedances) in decreasing order

This order is suggested by the inverse bijection and the inversion tables

Let
$$\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$$
.

$$H = \{4\}$$

$i \in F$	1	3	5	
$\sigma(i) \in F'$	7	5	9	
ξ_i	0	1	0	

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

<ロト<部ト<基ト<基ト<基ト 41150 41150

Let
$$\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$$
.
 $H = \{4\}$

$i \in F$	1	3	5
$\sigma(i) \in F'$	7	5	9
ξ_i	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

•	•	•	•	•
2	6	8	9	4

・ロト・西ト・モート ヨー うへぐ

Let $\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$. $H = \{4\}$

$i \in F$	1	3	5	
$\sigma(i) \in F'$	7	5	9	1
ξ_i	0	1	0	

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Let $\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$. $H = \{4\}$

$i \in F$	1	3	5
$\sigma(i) \in F'$	7	5	9
ξ_i	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Let $\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$. $H = \{4\}$

$i \in F$	1	3	5	
$\sigma(i) \in F'$	7	5	9	
ξ_i	0	1	0	

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Let $\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$. $H = \{4\}$

$i \in F$	1	3	5	
$\sigma(i) \in F'$	7	5	9	1
ξ_i	0	1	0	

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Let $\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$. $H = \{4\}$

$i \in F$	1	3	5	
$\sigma(i) \in F'$	7	5	9	
ξ_i	0	1	0	

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Let $\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$. $H = \{4\}$

$i \in F$	1	3	5
$\sigma(i) \in F'$	7	5	9
ξ_i	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Let $\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$. $H = \{4\}$

$i \in F$	1	3	5
$\sigma(i) \in F'$	7	5	9
ξ_i	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Stage (b): G in increasing order

Let $\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$. $H = \{4\}$

$i \in F$	1	3	5
$\sigma(i) \in F'$	7	5	9
ξ_i	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Stage (b): G in increasing order

Let $\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$. $H = \{4\}$

$i \in F$	1	3	5
$\sigma(i) \in F'$	7	5	9
ξ_i	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Stage (c): F in decreasing order

Let $\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$. $H = \{4\}$

$i \in F$	1	3	5
$\sigma(i) \in F'$	7	5	9
ξ_i	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Stage (c): F in decreasing order

Let $\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$. $H = \{4\}$

$i \in F$	1	3	5
$\sigma(i) \in F'$	7	5	9
ξ_i	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Stage (c): F in decreasing order

・ロト・日本・山下・ 山下・ 山下・ シック

Let $\sigma = 715492638 = (1762)(3598)(4) \in \mathfrak{S}_9$. $H = \{4\}$

$i \in F$	1	3	5
$\sigma(i) \in F'$	7	5	9
ξ_i	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G'$	1	2	6	3	8
ξ_i	0	0	1	0	0

Stage (c): F in decreasing order

Structure

Ontinued fractions and enumerative combinatorics

- Classical continued fractions
- Ø Sokal-Zeng's results for factorials
- O.-Sokal's results for Genocchi and median Genocchi numbers
- Onjectures
- Proof overview of existing results
 - Flajolet's combinatorial interpretation
 - Poata-Zeilberger bijection

What's new

- Laguerre digraphs
- O New interpretation of the FZ bijection

The story continues ...

Flajolet's 1980 paper allowed continued fractions with non-commutative variables $% \left({{{\rm{A}}_{\rm{B}}}} \right)$

Flajolet's 1980 paper allowed continued fractions with non-commutative variables $% \left({{{\rm{A}}_{\rm{B}}}} \right)$

However, for this work, it is very important that the variables commute

Flajolet's 1980 paper allowed continued fractions with non-commutative variables

However, for this work, it is very important that the variables commute

So there must be non-commutative analogues of continued fractions coming from Biane bijection or Françon–Viennot bijection Flajolet's 1980 paper allowed continued fractions with non-commutative variables

However, for this work, it is very important that the variables commute

So there must be non-commutative analogues of continued fractions coming from Biane bijection or Françon–Viennot bijection (partially done by Kuba–Varvak '21)

Baril and Kirgizov (2021) conjectured the following equidistribution of statistics on \mathfrak{S}_n :

Conjecture

The bistatistics (des₂, cyc) and (pex,cyc) are equidistributed.

Baril and Kirgizov (2021) conjectured the following equidistribution of statistics on \mathfrak{S}_n :

Conjecture

The bistatistics (des₂, cyc) and (pex,cyc) are equidistributed.

Han-Mao-Zeng (2021) showed that this conjecture is equivalent to the following:

Baril and Kirgizov (2021) conjectured the following equidistribution of statistics on \mathfrak{S}_n :

Conjecture

The bistatistics (des₂, cyc) and (pex,cyc) are equidistributed.

Han-Mao-Zeng (2021) showed that this conjecture is equivalent to the following:

How do we resolve this???

Baril and Kirgizov (2021) conjectured the following equidistribution of statistics on \mathfrak{S}_n :

Conjecture

The bistatistics (des₂, cyc) and (pex,cyc) are equidistributed.

Han-Mao-Zeng (2021) showed that this conjecture is equivalent to the following:

Conjecture

$$\sum_{n=0}^{\infty} y^{\text{des}_2 \sigma} \lambda^{\text{cyc}\sigma} = \frac{1}{1 - \lambda z - \frac{\lambda y z^2}{1 - (\lambda + 2)z - \frac{(\lambda + 1)(y + 1)z^2}{\dots}}}$$

How do we resolve this???

An index i is a descent of type 2 if i is a descent and i is a record (left-to-right maxima)

Merci pour votre attention

Sokal–Zeng's master J-fraction

Pictorial representation

Pictorial representation

$$\begin{split} \sigma &= 7\,1\,9\,2\,5\,4\,8\,6\,10\,3\,11\,12\,14\,13 = \\ & (1,7,8,6,4,2)\,(3,9,10)\,(5)\,(11)\,(12)\,(13,14) \in \mathfrak{S}_{14}. \end{split}$$

Due to Corteel (2007)

Crossings, nestings and pseudo-nestings

Sokal–Zeng first master J-fraction for permutations

 $Q_n(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e})$ =

$$\sum_{\sigma \in \mathfrak{S}_{n}} \prod_{i \in \operatorname{Cval}(\sigma)} \mathsf{a}_{\operatorname{ucross}(i,\sigma),\operatorname{unest}(i,\sigma)} \prod_{i \in \operatorname{Cpeak}(\sigma)} \mathsf{b}_{\operatorname{lcross}(i,\sigma),\operatorname{lnest}(i,\sigma)} \times \\ \prod_{i \in \operatorname{Cdfall}(\sigma)} \mathsf{c}_{\operatorname{lcross}(i,\sigma),\operatorname{lnest}(i,\sigma)} \prod_{i \in \operatorname{Cdrise}(\sigma)} \mathsf{d}_{\operatorname{ucross}(i,\sigma),\operatorname{unest}(i,\sigma)} \times \\ \prod_{i \in \operatorname{Fix}(\sigma)} \mathsf{e}_{\operatorname{psnest}(i,\sigma)}$$

Sokal-Zeng first master J-fraction for permutations

$Q_n(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e})$ =

$$\sum_{\sigma \in \mathfrak{S}_{n}} \prod_{i \in \operatorname{Cval}(\sigma)} \mathsf{a}_{\operatorname{ucross}(i,\sigma),\operatorname{unest}(i,\sigma)} \prod_{i \in \operatorname{Cpeak}(\sigma)} \mathsf{b}_{\operatorname{lcross}(i,\sigma),\operatorname{lnest}(i,\sigma)} \times \\ \prod_{i \in \operatorname{Cdfall}(\sigma)} \mathsf{c}_{\operatorname{lcross}(i,\sigma),\operatorname{lnest}(i,\sigma)} \prod_{i \in \operatorname{Cdrise}(\sigma)} \mathsf{d}_{\operatorname{ucross}(i,\sigma),\operatorname{unest}(i,\sigma)} \times \\ \prod_{i \in \operatorname{Fix}(\sigma)} \mathsf{e}_{\operatorname{psnest}(i,\sigma)}$$

Theorem

$$\sum_{n=0}^{\infty} Q_n(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}) t^n = \frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\ddots}}}}$$

メロン スピン メヨン メヨン

Sokal–Zeng first master J-fraction for permutations

$Q_n(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e})$ =

$$\begin{split} &\sum_{\sigma \in \mathfrak{S}_n} \prod_{i \in \operatorname{Cval}(\sigma)} \mathsf{a}_{\operatorname{ucross}(i,\sigma),\operatorname{unest}(i,\sigma)} \prod_{i \in \operatorname{Cpeak}(\sigma)} \mathsf{b}_{\operatorname{lcross}(i,\sigma),\operatorname{lnest}(i,\sigma)} \times \\ &\prod_{i \in \operatorname{Cdfall}(\sigma)} \mathsf{c}_{\operatorname{lcross}(i,\sigma),\operatorname{lnest}(i,\sigma)} \prod_{i \in \operatorname{Cdrise}(\sigma)} \mathsf{d}_{\operatorname{ucross}(i,\sigma),\operatorname{unest}(i,\sigma)} \times \\ &\prod_{i \in \operatorname{Fix}(\sigma)} \mathsf{e}_{\operatorname{psnest}(i,\sigma)} \end{split}$$

Theorem

$$\sum_{n=0}^{\infty} Q_n(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}) t^n = \frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\cdot}}}}$$
$$\gamma_k = \left(\sum_{\xi=0}^{k-1} c_{k-1-\xi,\xi}\right) + \left(\sum_{\xi=0}^{k-1} d_{k-1-\xi,\xi}\right) + e_k$$
$$\beta_k = \left(\sum_{\xi=0}^{k-1} a_{k-1-\xi,\xi}\right) \left(\sum_{\xi=0}^{k-1} b_{k-1-\xi,\xi}\right)$$

<ロ> <部> <き> <き> <き</p>

(D. arxiv '23) master J-fraction for permutations

$$Q_{n}(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \lambda) = \sum_{\substack{\sigma \in \mathfrak{S}_{n} \\ i \in \operatorname{Cval}(\sigma)}} \prod_{i \in \operatorname{Cval}(\sigma)} \mathbf{a}_{\operatorname{ucross}(i,\sigma) + \operatorname{unest}(i,\sigma)} \prod_{i \in \operatorname{Cpeak}(\sigma)} \mathbf{b}_{\operatorname{lcross}(i,\sigma), \operatorname{lnest}(i,\sigma)} \times \prod_{i \in \operatorname{Cdfall}(\sigma)} \mathbf{c}_{\operatorname{lcross}(i,\sigma), \operatorname{lnest}(i,\sigma)} \prod_{i \in \operatorname{Cdrise}(\sigma)} \mathbf{d}_{\operatorname{ucross}(i,\sigma), \operatorname{unest}(i,\sigma)} \times \prod_{i \in \operatorname{Fix}(\sigma)} \mathbf{e}_{\operatorname{psnest}(i,\sigma)} \lambda^{\operatorname{cyc}(\sigma)}$$

(D. arxiv '23) master J-fraction for permutations

 $Q_n(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \lambda)$ =

$$\begin{split} &\sum_{\sigma \in \mathfrak{S}_n} \prod_{i \in \operatorname{Cval}(\sigma)} \mathbf{a}_{\operatorname{ucross}(i,\sigma) + \operatorname{unest}(i,\sigma)} \prod_{i \in \operatorname{Cpeak}(\sigma)} \mathbf{b}_{\operatorname{lcross}(i,\sigma), \operatorname{lnest}(i,\sigma)} \times \\ &\prod_{i \in \operatorname{Cdfall}(\sigma)} \mathbf{c}_{\operatorname{lcross}(i,\sigma), \operatorname{lnest}(i,\sigma)} \prod_{i \in \operatorname{Cdrise}(\sigma)} \mathbf{d}_{\operatorname{ucross}(i,\sigma), \operatorname{unest}(i,\sigma)} \times \\ &\prod_{i \in \operatorname{Fix}(\sigma)} \mathbf{e}_{\operatorname{psnest}(i,\sigma)} \lambda^{\operatorname{cyc}(\sigma)} \end{split}$$

Theorem

$$\sum_{n=0}^{\infty} Q_n(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \lambda) t^n = \frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\cdot}}}}$$

(D. arxiv '23) master J-fraction for permutations

 $Q_n(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \lambda)$ =

$$\sum_{\substack{\sigma \in \mathfrak{S}_n \\ i \in \operatorname{Cval}(\sigma)}} \prod_{i \in \operatorname{Cval}(\sigma)} \mathbf{a}_{\operatorname{ucross}(i,\sigma) + \operatorname{unest}(i,\sigma)} \prod_{i \in \operatorname{Cpeak}(\sigma)} \mathbf{b}_{\operatorname{lcross}(i,\sigma), \operatorname{lnest}(i,\sigma)} \times \prod_{i \in \operatorname{Cdfall}(\sigma)} \mathbf{c}_{\operatorname{lcross}(i,\sigma), \operatorname{lnest}(i,\sigma)} \prod_{i \in \operatorname{Cdrise}(\sigma)} \mathbf{d}_{\operatorname{ucross}(i,\sigma), \operatorname{unest}(i,\sigma)} \times \prod_{i \in \operatorname{Fix}(\sigma)} \mathbf{e}_{\operatorname{psnest}(i,\sigma)} \lambda^{\operatorname{cyc}(\sigma)}$$

Theorem

$$\sum_{n=0}^{\infty} Q_n(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \lambda) t^n = \frac{1}{1 - \gamma_0 t - \frac{\beta_1 t^2}{1 - \gamma_1 t - \frac{\beta_2 t^2}{1 - \gamma_2 t - \frac{\beta_3 t^2}{\ddots}}}}$$
$$\gamma_k = \left(\sum_{\xi=0}^{k-1} c_{k-1-\xi,\xi}\right) + \left(\sum_{\xi=0}^{k-1} d_{k-1-\xi,\xi}\right) + \lambda \mathbf{e}_k$$
$$\beta_k = (\lambda + k - 1) \mathbf{a}_{k-1} \left(\sum_{\xi=0}^{k-1} \mathbf{b}_{k-1-\xi,\xi}\right)$$

ヘロン 人間 とくほ とくほ とう