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@ Continued fractions and enumerative combinatorics

@ Classical continued fractions

@ Sokal-Zeng's results for factorials

©® D.-Sokal’s results for Genocchi and median Genocchi numbers
@ Conjectures

@ Proof overview of existing results

@ Flajolet’'s combinatorial interpretation
@ Foata—Zeilberger bijection
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@ Laguerre digraphs
@ New interpretation of the FZ bijection

@ The story continues ...
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Continued fractions for ogf

Given sequence (ay )nx0

want to write

no_
Zant = ol
OéQt
1--.

Stieltjes-type continued fractions (S-fractions)

1
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An example

Z nlt" =

n=0
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This line of thought goes back to Euler

* DIVERGENTIBVS. 225

¢ §. 22. Quemadmodum sutem huiusmodi fractio-
num  conti valor fit inveftig , alibi oftendi :
Scilicet cum fingulorum  denominatorum partes integrae
fint vnitates, {0li numeratores in computum veniuat ;
fit ergo x=1, atque inveftigatio fammae A fequenti
modo inflituetyr :

et ., . e w o em
A=y, Lh L h & 58 5B e

num.1, X, 2, 2,3, 8, 4, 45 5, 5, etc:

Fradtiones nimirom hic exhibitae continuo propius ad

werum  valorem ipfius ‘A accedunt, et quidem alternatim
o fant majores et minores; ita vt fit:

Tom. V. Nou. Com, : Ff ) A>

Euler (1760)
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Jacobi-type continued fractions

Bit?
Bat?
1--.

L =90t -

I-mt-

J-fractions in short
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J-fraction for n!

where
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Sokal-Zeng's (2022) reverse program

Start with

nlt" =

Bit?
t2
1=yt — B2 .

L8

L=t -

where

2n+1

Tn
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Sokal-Zeng's (2022) reverse program

Start with
o 1
nlt" =
7;) Bt
L=qot = ———F7—%
1=yt — Bat
=9
where
Yo = 2n+1
Bn = TL2
Instead consider
Y = Wo
Yo = [me+(n—1Dus]+[y2+ (n-1)va] +wy,
Bn = [r1+(m-Dui]{y1 +(n—-1)vq]
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Sokal-Zeng's (2022) reverse program

Start with
o 1
nlt" =
7;) Bt
L=qot = ———F7—%
1-mt- Pt
=9
where
Yo = 2n+1
Bn = TL2
Instead consider
Y = Wo
Y = [me+(n—1Dus]+ [y + (n—1)va] +wy,
Bn = [r1+(m-Dui]{y1 +(n—-1)vq]

Find the 10 permutation statistics x1,Xa, Y1, Y2, U1, U2, V1, U2, Wo, (Wn )ns1

9150



Continued fractions by Sokal-Zeng (2022) for

permutations

“First” (Cycles not counted) “Second” (Cycles counted)

Conjecture: J-fraction with 10-statistics

J-fraction with 10-statistics
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permutations

“First” (Cycles not counted)

“Second” (Cycles counted)

J-fraction with 10-statistics

P, g-generalisation:
J-fraction with 18 statistics

Conjecture: J-fraction with 10-statistics

J

J-fraction with 9-statistics

P, g-generalisation:
J-fraction with 15 statistics

101 50



Continued fractions by Sokal-Zeng (2022) for

permutations

“First” (Cycles not counted) “Second” (Cycles counted)

Conjecture: J-fraction with 10-statistics

|
J-fraction with 10-statistics J-fraction with O-statistics
P, g-generalisation: P, g-generalisation:
J-fraction with 18 statistics J-fraction with 15 statistics

Master J-fraction:

three infinite 2-parameter families
two infinite 1-parameter family

and one statistic for counting cycles

Master J-fraction:
four infinite 2-parameter families
one infinite 1-parameter family
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Continued fractions by Sokal-Zeng (2022) for

permutations

“First” (Cycles not counted) “Second” (Cycles counted)

Conjecture: J-fraction with 10-statistics

|
J-fraction with 10-statistics J-fraction with O-statistics
P, g-generalisation: P, g-generalisation:
J-fraction with 18 statistics J-fraction with 15 statistics

Master J-fraction:

three infinite 2-parameter families
two infinite 1-parameter family

and one statistic for counting cycles

Master J-fraction:
four infinite 2-parameter families
one infinite 1-parameter family

Proof: Foata—Zeilberger bijection | Proof:
(1990) Biane bijection (1993)
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At around the same time, Blitvi¢-Steingrimsson (2021) independently
came up with a 14-variable continued fraction
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At around the same time, Blitvi¢-Steingrimsson (2021) independently
came up with a 14-variable continued fraction
Also Elizalde (2017)
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At around the same time, Blitvi¢-Steingrimsson (2021) independently
came up with a 14-variable continued fraction
Also Elizalde (2017)

They later discovered that Randrianarivony (1998) had a 17-variable
continued fraction.
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Results and conjecture for factorials

A
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Cycle classification

For a permutation o, compare each i with (i) and o~1(4):
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Cycle classification

For a permutation o, compare each i with (i) and o~1(4):

cycle valley o1 (i) > i < o (i)
cycle peaks o71(i) <i > o (4)
cycle double rise 071 (i) < i < o (7)
cycle double fall o=1(i) > i > (i)

fixed point i = (i) = 071 (4)

131 60



Record classification

Consider o as a(1)0(2)...0(n):
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Record classification

Consider o as a(1)0(2)...0(n):

@ i is record if for every j < i we have o(j) <o (%)
left-to-right-maxima

e i is antirecord if for every j >4 we have o(j) > (%)
right-to-left-minima
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Record classification

Consider o as a(1)0(2)...0(n):
@ i is record if for every j < i we have o(j) <o (%)
left-to-right-maxima
e i is antirecord if for every j >4 we have o(j) > (%)
right-to-left-minima

Each i is one of the following four types:

rar - record-antirecord

erec - exclusive record ﬁ

@ earec - exclusive antirecord jij

nrar - neither record-antirecord ﬁi

14 1 50



Record-and-cycle classification

Each i is one of the following ten (not 20) types:
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Record-and-cycle classification

Each i is one of the following ten (not 20) types:

cpeak cval cdrise cdfall fix
erec ereccval | ereccdrise
earec | eareccpeak eareccdfall
rar rar
nrar nrcpeak nrcval nrcdrise nrcdfall nrfix

15 | K0



Continued fractions counting permutation statistics

Consider 10-variable polynomials

P (21,22, Y1, Y2, u1, U2, V1, V2, W, 2) =
eareccpeak(o) eareccdfall(o) ereccval(o) ereccdrise(o) rar(o)
Z Ty Ty Y1 Yo z X

oS,

ul;rcpeak(o’) u;rcdfall(a) lelrcval(a) v;lrcdrise(a) wnrﬁx(g)
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Continued fractions counting permutation statistics

Consider 10-variable polynomials

P (21,22, Y1, Y2, u1, U2, V1, V2, W, 2) =
eareccpeak(o) eareccdfall(o) ereccval(o) ereccdrise(o) rar(o)
Z Ty Ty Y1 Yo z X
oS,

ul;rcpeak(o’) u;rcdfall(a) lelrcval(a) v;lrcdrise(a) wnrﬁx(g)

Theorem (Sokal-Zeng (2022) First J-fraction for permutations)

oo
> Po(z1,%2,Y1, Y2, u1, U2, 01, V2, w, 2)t"
n=0
1
Ty - 12
(w1 +u1) (g1 +v1) - 2
(21 +2u1) (y1 + 2v1) - 2
1--.

1-z-t-
1-(zp+y2+w)-t-

1-((@2+u2) + (y2 +v2) +w) -t —
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Continued fractions counting permutation statistics

Consider 10-variable polynomials

P (21,22, Y1, Y2, u1, U2, V1, V2, W, 2) =
eareccpeak(o) eareccdfall(o) ereccval(o) ereccdrise(o) rar(o)
Z Ty Ty Y1 Yo z X
oS,

ul;rcpeak(o’) u;rcdfall(a) lelrcval(a) v;lrcdrise(a) wnrﬁx(g)

Theorem (Sokal-Zeng (2022) First J-fraction for permutations)

oo
> Po(z1,%2,Y1, Y2, u1, U2, 01, V2, w, 2)t"
n=0
1
Ty - 12
(w1 +u1) (g1 +v1) - 2
(21 +2u1) (y1 + 2v1) - 2
1--.

l=zeit=

1-(zp+y2+w)-t-

1-((@2+u2) + (y2 +v2) +w) -t —

Proof uses the Foata—Zeilberger bijection (1990)

16 1 50



Can we count cycles as well?

Consider 11-variable polynomials

Pn(x17x27yla Y2,Uy,U2,V1,V2, W, Z) =
careccpeak(c) eareccdfall(o) ereccval(o) ereccdrise(o) rar(o
> o Ty (2 Yo (o)

ceS,

urllrcpeak(a) u;rcdfall(a) v;lrcval(a) v;rcdrise(o) wnrﬁx(g) )\cyc(a')
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Can we count cycles as well?

Consider 11-variable polynomials

Pn(x17x27yla Y2,Uy,U2,V1,V2, W, Z) =
eareccpeak(o) eareccdfall(o) ereccval(o) ereccdrise(o) rar(o)
Z Ty Ty Yy Yo z X

ceS,

urllrcpeak(a) u;rcdfall(a) v;lrcval(a) v;rcdrise(a) wnrﬁx(g) )\cyc(a')

No nice J-fraction!
But can obtain J-fraction by specialising y1 = v1:
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Can we count cycles as well?

Consider 11-variable polynomials
Pn(x17x27yla Y2,Uy,U2,V1,V2, W, Z) =
eareccpeak(o) eareccdfall(o) ereccval(o) ereccdrise(o) rar(o)
Z Ty Ty Yy Yo z X

ceS,

urllrcpeak(a) u;rcdfall(a) v;lrcval(a) v;rcdrise(o) wnrﬁx(g) )\cyc(a')

No nice J-fraction!
But can obtain J-fraction by specialising y1 = v1:

Conjecture (Sokal-Zeng (2022))

(o]

Z Pn(xla x2,Y1,Y2,U1,U2,Y1,V2,W, 2, )‘)tn
n=0
1

Ay yy -t

A+ 1) (@1 +uy)y; - 2
(A +2) (21 +2up)y; -
1--.

I—Az-t—

1- (@ +ys+Aw)-t—

1= ((z2 +v2) + (y2 +v2) + Aw) - t

171 650



Sokal-Zeng conjectured a continued fraction for 11 variable polynomials
involving one specialisation y; = v;.
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Sokal-Zeng conjectured a continued fraction for 11 variable polynomials
involving one specialisation y; = v;.

They could only prove with two specialisations y; = v1 and ys = v9
Second J-fraction for permutations

Used Biane bijection (1993).
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Sokal-Zeng conjectured a continued fraction for 11 variable polynomials
involving one specialisation y; = v;.

They could only prove with two specialisations y; = v1 and ys = v9
Second J-fraction for permutations

Used Biane bijection (1993).
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Genocchi and median Genocchi numbers

A
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Genocchi numbers

The Genocchi numbers are given by

t2n+2

ttan( ) Z gnm

20 | 50



Genocchi numbers

The Genocchi numbers are given by

ttan( ) Zgn(;%r;

The first few numbers are 1,1,3,17,155,2073,....

20 | 50



Combinatorial Interpretation

Genocchi numbers:

D-e-semiderangements
gn = F#{o€69,|2i>0(2i) and 2i-1<0(2i-1)}

D-o-semiderangements
= #{0€Gs,|20>0(2) and 2i -1 <o (2i - 1)}

21 | 50



Combinatorial Interpretation

Genocchi numbers:

9n

D-e-semiderangements
= #{0eBGy,|2i>0(2i) and 2i-1<0(2i-1)}

D-o-semiderangements
= #{0€Gs,|20>0(2) and 2i -1 <o (2i - 1)}

Median Genocchi numbers:

hn+1

hﬂ,

D-permutations (introduced by Lazar and Wachs (2019))
Dan| = #{0 € G2|2i > 0(2i) and 2i - 1 < 5(2i - 1)}

D-derangements
#{o€G9,]2i >0(2i) and 2i -1 <o (2i - 1)}
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Combinatorial Interpretation

Genocchi numbers:

D-e-semiderangements
gn = F#{o€69,|2i>0(2i) and 2i-1<0(2i-1)}

D-o-semiderangements
= #{0€Gs,|20>0(2) and 2i -1 <o (2i - 1)}

Median Genocchi numbers:
D-permutations (introduced by Lazar and Wachs (2019))
hov1t = [Don] = #{0€G2,|2i > 0(2i) and 2i-1<0(2i - 1)}

D-derangements
hn = #{0€69,|2i>0(2i)and 2i—-1<0(2i-1)}

D — Dumont-like

21 | 50



Continued fractions for median Genocchi numbers

The once-shifted median Genocchi numbers h,,.1 have the following
Thron-type continued fraction

Z hn+1 t" =
= 1t
0 1-t-

27 | {5



Story for Genocchi and median Genocchi

D.—Sokal (2024):
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Story for Genocchi and median Genocchi

D.—Sokal (2024):

“First” (Cycles not counted)

“Second” (Cycles counted)

0-T-fraction with 12-statistics
i

P, g-generalisation:

0-T-fraction with 22 statistics
i

Master T-fraction:

four infinite 2-parameter families

two infinite 1-parameter family

Proof:
FZ-like bijection

Variant forms with
slightly different statistics

Conjecture: 0-T-fraction
with 12-statistics

0-T-fraction with 12-statistics

f
P, g-generalisation:
0-T-fraction with 21 statistics

f
Master T-fraction:
three infinite 2-parameter families,
three infinite 1-parameter families,
and one statistic for counting cycles
Proof:
Biane-like bijection

22 | {5



Randrianarivony—Zeng conjecture (1996)

Define the polynomials

Gn(I, Y, 7, g) _ Z Icomi(d)ylcma(o‘)jccmi(a)yrcmi(a)
where 0eDs,

24 | 50



Randrianarivony—Zeng conjecture (1996)

Define the polynomials

Gn($7ya 1_7,3]) _ Z Icomi(d)ylcma(o‘)jccmi(a)yrcmi(a)
where 0D,
@ comi — odd cycle minima,
lema — left-to-right maxima whose value is even
cemi — even cycle minima
remi — right-to-left minima whose value is even

®© 6 ¢
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Randrianarivony—Zeng conjecture (1996)

Define the polynomials

Gn(iZ?, v, z, g) _ Z Icomi(a’)ylcma(o‘)jccmi(a)yrcmi(a)
where 0D,
@ comi — odd cycle minima,
lema — left-to-right maxima whose value is even
cemi — even cycle minima
remi — right-to-left minima whose value is even

®© 6 ¢

The ogf of the polynomials G, (x,y,T,y) has the following S-fraction
o]  on 1
Z Gn(xvyaxmy)t = (1)
n=0 1_ I’yt
| 1(z+y)t
) (z+1)(y+ 1)t
2z +y+1)t
1-
(x+2)(y+2)t
: 3(Z+y+2)t




Plot twist for Sokal-Zeng conjecture

“First” (Cycles not counted) “Second” (Cycles counted)

Conjecture: J-fraction with 10 statistics

U

J-fraction with 10 statistics J-fraction with 9 statistics

f f
P, g-generalisation: P, g-generalisation:
J-fraction with 18 statistics J-fraction with 15 statistics
Master J-fraction: Master J-fraction:
four infinite 2-parameter families three infinite 2-parameter families
one infinite 1-parameter family two infinite 1-parameter family

and one statistic for counting cycles

e

Proof: Proof:
Foata—Zeilberger bijection (1990) Biane bijection (1993)
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Conjectures of D.—Sokal, Randrianarivony—Zeng

“First” (Cycles not counted)

“Second” (Cycles counted)

0-T-fraction with 12 statistics

f

P, g-generalisation:
0-T-fraction with 22 statistics

Master T-fraction: four infinite
2-parameter families
two infinite 1-parameter families

MProof:

FZ-like bijection

Conjecture: 0-T-fraction
with 12 statistics
0-T-fraction with 12 statistics

f

P, g-generalisation
0-T-fraction with 21 statistics

Master T-fraction:

three infinite 2-parameter families,
three infinite 1-parameter families,
and one statistic for counting cycles

Proof:

Biane-like bijection

Variant forms

Variant forms —
Randrianarivony—Zeng (1996)
S-fraction with 4 statistics

26 | 50



Pan—Zeng ('23) came up with multivariate continued fractions for other
objects enumerated by Genocchi numbers also introduced in work of
Lazar's PhD thesis

27 | 50



@ Proof overview of existing results

@ Flajolet’'s combinatorial interpretation
@ Foata—Zeilberger bijection

28 | 50



Motzkin paths

Consider a Motzkin path, let's say
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Motzkin paths

Consider a Motzkin path, let's say
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Motzkin paths

Consider a Motzkin path, let's say

Assign weights:
o ~:1
o — from height ¢ > i : ~;
e \ from height i > (i—1) : 5;
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Motzkin paths

Consider a Motzkin path, let's say

Assign weights:
o ~:1
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Motzkin paths

Consider a Motzkin path, let's say

1

Weight = £1 8283877273
Assign weights:
e ~:1
@ — from height i — i : ;
e \ from heighti — (i—1) : 5;

209 | 50



Combinatorial Interpretation of J-fraction

J-fraction

Bit?
Bat?

1—’)’275—637

1—’)/0t—
1—’)/1t—
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Combinatorial Interpretation of J-fraction

J-fraction

1—’)/0t—
1—’)/1t—
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Combinatorial Interpretation of J-fraction

J-fraction

Theorem (Flajolet '80)
The a,, are weighted sum of Motzkin paths with n steps.
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Combinatorial Interpretation of J-fraction

J-fraction

Theorem (Flajolet '80)
The a,, are weighted sum of Motzkin paths with n steps.

o Stieltjes-type continued fractions — weighted Dyck paths (Flajolet
'80)

@ Thron-type continued fractions — weighted Schroder paths
(Oste—Van der Jeugt (2015), Fusy—Guitter(2017), Josuat-Verges
(2018), Sokal (unpublished))
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Combinatorial Interpretation of J-fraction

J-fraction

Theorem (Flajolet '80)
The a,, are weighted sum of Motzkin paths with n steps.

o Stieltjes-type continued fractions — weighted Dyck paths (Flajolet
'80)

@ Thron-type continued fractions — weighted Schroder paths
(Oste—Van der Jeugt (2015), Fusy—Guitter(2017), Josuat-Verges
(2018), Sokal (unpublished))

Gateway for proving continued fractions using bijective combinatorics :-D

20 1 50



Foata—Zeilberger bijection

A

21 | {0



excedance indices F'

{iec:0(i)>i} = Cdriseu Cval

A
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excedance indices F'
excedance values F”’

{iec:0(i)>i} = Cdriseu Cval
{ieo:i>0 (i)} = Cdriseu Cpeak

22 | {5



excedance indices ' = {iec:0(i)>i} = Cdriseu Cval
excedance values F' = {ieco:i>0 (i)} = Cdriseu Cpeak
antiexcedance indices G = {ieo:0(i)<i} = CdfalluCpeak
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excedance indices ' = {iec:0(i)>i} = Cdriseu Cval

excedance values F’ {ieo:i>0 (i)} = Cdriseu Cpeak
antiexcedance indices G {iec:0(i)<i} = CdfalluCpeak
antiexcedance values G’ = {ico:i<o (i)} = CdfalluCval
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excedance indices F'
excedance values F’
antiexcedance indices G
antiexcedance values G’
fixed points H

{ieo:
{ieo:
{ieo:
{ieo:
{ieo:

o(i) >4} = Cdriseu Cval

i>0 (i)} = Cdrise U Cpeak
o(i) <i} = Cdfallu Cpeak
i<o (i)} = CdfalluCval
i=0(i)} = Fix
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excedance indices ' = {iec:0(i)>i} = Cdriseu Cval
excedance values F' = {ieco:i>0 (i)} = Cdriseu Cpeak
antiexcedance indices G = {ieo:0(i)<i} = CdfalluCpeak
antiexcedance values G’ = {ico:i<o (i)} = CdfalluCval
fixed points H = {i€o:i=0(i)} = Fix

A permutation can be fully described the following data:
e Sets F,F',G,G' H
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excedance indices ' = {iec:0(i)>i} = Cdriseu Cval
excedance values F' = {ieco:i>0 (i)} = Cdriseu Cpeak
antiexcedance indices G = {ieo:0(i)<i} = CdfalluCpeak
antiexcedance values G’ = {ico:i<o (i)} = CdfalluCval
fixed points H = {i€o:i=0(i)} = Fix

A permutation can be fully described the following data:
e Sets F,F',G,G' H
° o|p:F—F'
° 0l:G->G'

22 | {5



Foata—Zeilberger bijection

Foata—Zeilberger bijection:

o (W)
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Foata—Zeilberger bijection

Foata—Zeilberger bijection:

o (W)

where

@ w is a Motzkin path, where the level steps come in three different
colours (red, blue, green)
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Foata—Zeilberger bijection

Foata—Zeilberger bijection:

o (W)

where

@ w is a Motzkin path, where the level steps come in three different
colours (red, blue, green)
Correspond to F, F',G,G', H
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Foata—Zeilberger bijection

Foata—Zeilberger bijection:

o (W)

where

@ w is a Motzkin path, where the level steps come in three different
colours (red, blue, green)
Correspond to F, F',G,G', H

@ £=(&,...,&,) are labels on the steps of the Motzkin paths
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Foata—Zeilberger bijection

Foata—Zeilberger bijection:

o (W)

where

@ w is a Motzkin path, where the level steps come in three different
colours (red, blue, green)
Correspond to F, F',G,G', H

@ £=(&,...,&,) are labels on the steps of the Motzkin paths
Correspond to 0| : F - F' and o|;: G > G’
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Description of 0 - w

@ If i is a cycle valley, step i is
o If i is a cycle peak, step i is \

@ If 7 is a cycle double rise, cycle double fall or fixed, step i is —, — or
respectively.
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Description of labels o — ¢

For i € [n]
#{j:j<iand o(j)>0(i)} ifo(i)>i ifie Cval u Cdrise

& = sH#{j:j>iand o(j) <o(i)} ifo(i)<i ifieCpeak u Cdfall
0 if o(i) =i ifie Fix
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An example

Let o = 715492638 = (1762)(3598)(4) € Gq.
- Cval = {1,3} - Cpeak = {7,9} - Cdrise = {5} -
Cdfall = {2,6,8}
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An example

Let o = 715492638 = (1762)(3598)(4) € Gq.
- Cval = {1,3} - Cpeak = {7,9} - Cdrise = {5} -
Cdfall = {2,6,8}

The Motzkin path w is

N
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An example

Let o = 715492638 = (1762)(3598)(4) € Sq.

- Cval = {1,3}
Cdfall = {2,6,8}

The Motzkin path w is

N

The labels £ and the sets F, F' G, G’ are:

- Cpeak = {7,9}

- Cdrise = {5}

iceF |[1[3]5 ieG |2[6[7[8]09
o(i)eF" | 7]5]09 o(i)eG |[1]2]6|3]|8
&i 0[1]0 & 0jo[1[0]0
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© What's new

@ Laguerre digraphs
@ New interpretation of the FZ bijection

27 | 50



Laguerre digraph

Definition

A Laguerre digraph of size n is a directed graph on vertex set {1,...,n}
where each vertex has indegree 0 or 1 and outdegree 0 or 1.
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Laguerre digraph

Definition
A Laguerre digraph of size n is a directed graph on vertex set {1,...,n}
where each vertex has indegree 0 or 1 and outdegree 0 or 1.

Example:

|
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Laguerre digraph

Definition

A Laguerre digraph of size n is a directed graph on vertex set {1,...,n}
where each vertex has indegree 0 or 1 and outdegree 0 or 1.

Example:
L R
qﬁ

&

3

5, |

Connected components
@ Directed cycle
@ Directed paths
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Laguerre digraph

Definition

A Laguerre digraph of size n is a directed graph on vertex set {1,...,n}
where each vertex has indegree 0 or 1 and outdegree 0 or 1.

Example:

Connected components
@ Directed cycle
@ Directed paths

Generalise permutations
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An equivalent object with a different definition was introduced by
Foata—Strehl (1984) — Laguerre configurations

209 | {0



An equivalent object with a different definition was introduced by
Foata—Strehl (1984) — Laguerre configurations

Other authors often use partial permutations
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An equivalent object with a different definition was introduced by
Foata—Strehl (1984) — Laguerre configurations

Other authors often use partial permutations

Laguerre digraphs after Sokal (2022)
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“History” of Foata—Zeilberger bijection

Start with all n vertices and no edges
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Start with all n vertices and no edges

At each stage insert edges i - o (%)
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“History” of Foata—Zeilberger bijection

Start with all n vertices and no edges

At each stage insert edges i — o (i) in the following order:
Stage (a): i € H (fixed points) in increasing order

Stage (b): i € G (antiexcedances) in increasing order

Stage (c): i € F' (excedances) in decreasing order
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“History” of Foata—Zeilberger bijection

Start with all n vertices and no edges

At each stage insert edges i — o (i) in the following order:
Stage (a): i € H (fixed points) in increasing order

Stage (b): i € G (antiexcedances) in increasing order
Stage (c): i € F' (excedances) in decreasing order

This order is suggested by the inverse bijection and the inversion tables
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History with an example

Let o = 715492638 = (1762)(3598)(4) € &y.

H ={4}
ieF [1[3]5 icG |[2]6[7([8]9
o(i)eF” | 7509 o(i)eG |[1]2]6|3]|8
&i 0[1]0 3 ojo[1[0]0
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History with an example

Let o = 715492638 = (1762)(3598)(4) € &y.

H ={4}
ieF [1[3]5 icG |[2]6[7([8]9
o(i)eF” | 7509 o(i)eG |[1]2]6|3]|8
&i 0[1]0 3 ojo[1[0]0
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History with an example

Let o = 715492638 = (1762)(3598)(4) € q.

H = {4}
ieF 1[3]5 ieG 216|7(8|9
o) el [ 7]5]9 o()eG 126|383
& 0/1]0 §i 0{0]1]0]0
Stage (a): H in increasing order
3 5
° ° °
° ° °
8 9
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History with an example

Let o = 715492638 = (1762)(3598)(4) € q.

H = {4}
ieF 1[3]5 ieG 216|7(8|9
o) el [ 7]5]9 o()eG 126|383
& 0/1]0 §i 0{0]1]0]0
Stage (a): H in increasing order
3 5
° ° °
° ° °
8 9
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History with an example

Let o = 715492638 = (1762)(3598)(4) € q.

H = {4}
ieF 1[3]5 ieG 216|7(8|9
o) el [ 7]5]9 o()eG 126|383
& 0|1]0 & 0j0|1]0]|0
Stage (b): G in increasing order
3 5
° ° °
° ° °
8 9
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History with an example

Let o = 715492638 = (1762)(3598)(4) € q.

H = {4}
ieF 1[3]5 ieG 216|7(8|9
o) el [ 7]5]9 o()eG 126|383
& 0|1]0 & 0j0|1]0]|0
Stage (b): G in increasing order
1 3 5
T ° °
) ° °
2 8 9
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History with an example

Let o = 715492638 = (1762)(3598)(4) € q.

H = {4}
ieF 1[3]5 ieG 216|7(8|9
o) el [ 7]5]9 o()eG 126|383
& 0/1]0 §i 0{0]1]0]0
Stage (b): G in increasing order
1 7 3 5
T ) ° °
*“—e ° °
2 6 8 9
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History with an example

Let o = 715492638 = (1762)(3598)(4) € q.

H = {4}
ieF 1[3]5 ieG 216|7(8|9
o) el [ 7]5]9 o()eG 126|383
& 0|1]0 & 0j0|1]0]|0
Stage (b): G in increasing order
1 7 3 5
T I ° °
*“«—@ ° °
2 6 8 9
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History with an example

Let o = 715492638 = (1762)(3598)(4) € q.

H = {4}
ieF 1[3]5 ieG 216|7(8|9
o) el [ 7]5]9 o()eG 126|383
& 0/1]0 §i 0{0]1]0]0
Stage (b): G in increasing order
1 7 3 5
T I T .
*“«—@ ) °
2 6 8 9
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History with an example

Let o = 715492638 = (1762)(3598)(4) € q.

H={4}
iceF [1[3]5 ieG |2]6[7[8]09
o(i)eF" | 7]5]09 o(i)eG |[1]2]6|3]|8
& 0[1]0 3 0[0[1[0]0

Stage (b): G in increasing order

@ Ut

N O——e —
@I(*.\I
o OU—0 W
-~ 0

Nely
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History with an example

Let o = 715492638 = (1762)(3598)(4) € q.

H = {4}
ieF 1[3]5 ieG 216|7(8|9
o) el [ 7]5]9 o()eG 126|383
& 0/1]0 §i 0{0]1]0]0
Stage (c): F' in decreasing order
5
°

@I(*.\I
o OU—0 W
-~ 0

N O—e —

Nely
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History with an example

Let o = 715492638 = (1762)(3598)(4) € q.

H={4}
iceF [1[3]5 ieG |2]6[7[8]09
o(i)eF" | 7]5]09 o(i)eG |[1]2]6|3]|8
& 0[1]0 3 0[0[1[0]0

Stage (c): F' in decreasing order

CDI(*.\I
o O—0 W
T
O @—0@ Ut
-~ o

N O—e —
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History with an example

Let o = 715492638 = (1762)(3598)(4) € q.

H = {4}
ieF 1[3]5 ieG 216|7(8|9
o) el [ 7]5]9 o()eG 126|383
& 0/1]0 §i 0{0]1]0]0
Stage (c): F' in decreasing order
1 7 3
T I
° ®
2 6 8 9
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History with an example

Let o = 715492638 = (1762)(3598)(4) € q.

H={4}
iceF [1[3]5 ieG |2]6[7[8]09
o(i)eF" | 7]5]09 o(i)eG |[1]2]6|3]|8
& 0[1]0 3 0[0[1[0]0

Stage (c): F' in decreasing order

MQ%I»—A

S @—0 I
[ T
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@ The story continues ...
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Flajolet’s 1980 paper allowed continued fractions with non-commutative
variables
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Flajolet’s 1980 paper allowed continued fractions with non-commutative
variables

However, for this work, it is very important that the variables commute
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Flajolet’s 1980 paper allowed continued fractions with non-commutative
variables

However, for this work, it is very important that the variables commute
So there must be non-commutative analogues of continued fractions

coming from Biane bijection
or Frangon—Viennot bijection
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Flajolet’s 1980 paper allowed continued fractions with non-commutative
variables

However, for this work, it is very important that the variables commute
So there must be non-commutative analogues of continued fractions

coming from Biane bijection
or Frangon—Viennot bijection (partially done by Kuba—Varvak '21)
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A conjecture of Baril and Kirgizov

Baril and Kirgizov (2021) conjectured the following equidistribution of
statistics on &,,:

The bistatistics (dess, cyc) and (pex,cyc) are equidistributed.
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A conjecture of Baril and Kirgizov

Baril and Kirgizov (2021) conjectured the following equidistribution of
statistics on &,,:

The bistatistics (dess, cyc) and (pex,cyc) are equidistributed.

Han—Mao—Zeng (2021) showed that this conjecture is equivalent to the
following:

= 1

Z ydesyr)\cyca _

2
n=0 1-Az- Ayz

(A Dy 1)22

1-(A+2)z
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A conjecture of Baril and Kirgizov

Baril and Kirgizov (2021) conjectured the following equidistribution of
statistics on &,,:

The bistatistics (dess, cyc) and (pex,cyc) are equidistributed.

Han—Mao—Zeng (2021) showed that this conjecture is equivalent to the
following:

— €S20 \ CyCco 1
Z yd 2T = A 2’2
n=0 1-Az- J

1= (A+2)z- (A+1)(y+1)22

How do we resolve this???
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A conjecture of Baril and Kirgizov

Baril and Kirgizov (2021) conjectured the following equidistribution of
statistics on &,,:

The bistatistics (dess, cyc) and (pex,cyc) are equidistributed.

Han—Mao—Zeng (2021) showed that this conjecture is equivalent to the
following:

— €S20 \ CyCco 1
Z yd 2T = A 2’2
n=0 1-Az- J

1= (A+2)z- (A+1)(y+1)22

How do we resolve this???
An index ¢ is a descent of type 2 if ¢ is a descent and ¢ is a record

(left-to-right maxima)
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Merci pour votre attention
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Sokal-Zeng's master J-fraction

ar
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Pictorial representation
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Pictorial representation

0=7192548610311121413 =
(1,7,8,6,4,2) (3,9,10) (5) (11) (12) (13,14) € &14.

Due to Corteel (2007)
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Crossings, nestings and pseudo-nestings

LN

i J k l i l
Upper crossing Lower crossing
i J k l i l
Upper nesting Lower nesting
ucross(j, o) lcross(k, o)
unest(j, o) lnest(k, o)

Upper pseudo-nesting Lower pseudo-nesting
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Sokal-Zeng first master J-fraction for permutations
Qn(a,b,c,d,e) =

H Aucross(i,o), unest(i,0) H blcross(i,a), Inest(i,0) X

0e&, ieCval(o) 1eCpeak(o)
H Clcross(i,a),lnest(i,a) H ducross(i,o),unest(i,o) x
ieCdfall(o) ieCdrise(o)
H €psnest(i,o)
ieFix (o)
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Sokal-Zeng first master J-fraction for permutations

Q’ﬂ(a7 b7 c7 d7 e) =

H Aucross(i,o), unest(i,0) H blcross(i,a), Inest(i,0) X

0e&, ieCval(o) 1eCpeak(o)
H Clcross(i,o), Inest(i,o) H ducross(i,a),unest(i,o) X
ieCdfall(o) ieCdrise(o)
H €psnest(i,o)
ieFix (o)
Theorem
— 1
n o _
> Qu(a,b,c,d,e)t" = o
n=0 1=t - Bot?
2
1-mt- XE
1 -t - 37
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Sokal-Zeng first master J-fraction for permutations

Q’ﬂ(a7 b7 c7 d7 e) =

H Aucross(i,o), unest(i,0) H blcross(i,a), Inest(i,0) X

0e&, ieCval(o) 1eCpeak(o)
H Clcross(i,o), Inest(i,o) H ducross(i,a),unest(i,o) X
ieCdfall(o) ieCdrise(o)
H €psnest(i,o)
ieFix (o)

= 1
> Qu(a,b,c,d,e)t" = o
n=0 1 =0t - - )
Bat
1-mt- XE
1*’)’%*#
k-1 k-1 N
Ve = (Z Ck—1—g7g) 4 (Z dk—1—5,g) + ep
£=0 £=0
k-1 k-1
Br = (Z aklg,s)(z bkl&&)
=0 =0
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(D. arxiv '23) master J-fraction for permutations
Qn(a,b,c,d, e, \) =

Z H Aucross(i,o) + unest(i,0) H blCI‘OSS(i7O'), Inest(i,0) X

0eS, ieCval(o) 1eCpeak(o)
H Clcross(i,a),lnest(i,a) H ducross(i,a),unest(i,o) x
ieCdfall(o) 1eCdrise(o)
cyc(o
H €psnest(i,o) A (@)
ieFix (o)
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(D. arxiv '23) master J-fraction for permutations
Qn(a,b,c,d, e, \) =

Z H Aucross(i,o) + unest(i,0) H blCI‘OSS(i7O'), Inest(i,0) X

0eS, ieCval(o) 1eCpeak(o)
H Clcross(i,a),lnest(i,a) H ducross(i,a),unest(i,o) x
ieCdfall(o) 1eCdrise(o)
cyc(o
H €psnest(i,o) A (@)
ieFix (o)

> Qu(a,b,c,d, e A\)t" =
n=0
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(D. arxiv '23) master J-fraction for permutations
Qn(a,b,c,d, e, \) =

Z H Aucross(i,o) + unest(i,0) H blCI‘OSS(i7O'), Inest(i,0) X

0eS, ieCval(o) 1eCpeak(o)
H Clcross(i,a),lnest(i,a) H ducross(i,a),unest(i,o) x
ieCdfall(o) 1eCdrise(o)
cyc(o
H €psnest(i,o) A (@)
ieFix (o)

Z Qn(a»b7c7daea )‘)tn = 1 Bit?
n=0 1 =0t - = 5
Bot
1-mt- 7 2
1=t = 37
k-1 k-1 -
Ve = (Z Ck—l—f,f) + (Z dk—l—s,s) + Aey
£=0 £=0
k-1
B = (A+k-1) ak—l(z bk—1-§,g)
£=0
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