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Continued fractions for ogf

Given sequence (an)n≥0

want to write

∞
∑
n=0

ant
n
=

1

1 −
α1t

1 −
α2t

1 − ⋱

Stieltjes-type continued fractions (S-fractions)
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An example

∑
n=0

n!tn =
1

1 −
1 ⋅ t

1 −
1 ⋅ t

1 −
2 ⋅ t

1 −
2 ⋅ t

1 −
3 ⋅ t

1 −
3 ⋅ t

1 − . . .
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This line of thought goes back to Euler

Euler (1760)
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Jacobi-type continued fractions

1

1 − γ0t −
β1t

2

1 − γ1t −
β2t

2

1 − ⋱

J-fractions in short
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J-fraction for n!

∞
∑
n=0

n!tn =
1

1 − γ0t −
β1t

2

1 − γ1t −
β2t

2

1 − ⋱

where

γn = 2n + 1

βn = n2
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Sokal–Zeng’s (2022) reverse program

Start with

∞
∑
n=0

n!tn =
1

1 − γ0t −
β1t

2

1 − γ1t −
β2t

2

1 − ⋱

where

γn = 2n + 1

βn = n2

Instead consider

γ0 = w0

γn = [x2 + (n − 1)u2] + [y2 + (n − 1)v2] +wn

βn = [x1 + (n − 1)u1] [y1 + (n − 1)v1]

Question

Find the 10 permutation statistics x1, x2, y1, y2, u1, u2, v1, v2,w0, (wn)n≥1
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Continued fractions by Sokal–Zeng (2022) for
permutations

“First” (Cycles not counted) “Second” (Cycles counted)

Conjecture: J-fraction with 10-statistics

⇓

J-fraction with 10-statistics

J-fraction with 9-statistics
⇑ ⇑

p,q-generalisation:
J-fraction with 18 statistics

p,q-generalisation:
J-fraction with 15 statistics

⇑ ⇑

Master J-fraction:
four infinite 2-parameter families
one infinite 1-parameter family

Master J-fraction:
three infinite 2-parameter families
two infinite 1-parameter family
and one statistic for counting cycles

Proof: Foata–Zeilberger bijection
(1990)

Proof:
Biane bijection (1993)
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At around the same time, Blitvić–Steingŕımsson (2021) independently
came up with a 14-variable continued fraction

Also Elizalde (2017)

They later discovered that Randrianarivony (1998) had a 17-variable
continued fraction.
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came up with a 14-variable continued fraction
Also Elizalde (2017)

They later discovered that Randrianarivony (1998) had a 17-variable
continued fraction.

11 50
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Results and conjecture for factorials
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Cycle classification

For a permutation σ, compare each i with σ(i) and σ−1(i):

cycle valley σ−1(i) > i < σ(i)

cycle peaks σ−1(i) < i > σ(i)

cycle double rise σ−1(i) < i < σ(i)

cycle double fall σ−1(i) > i > σ(i)

fixed point i = σ(i) = σ−1(i)

13 50
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Record classification

Consider σ as σ(1)σ(2) . . . σ(n):

i is record if for every j < i we have σ(j) < σ(i)
left-to-right-maxima

i is antirecord if for every j > i we have σ(j) > σ(i)
right-to-left-minima

Each i is one of the following four types:

rar - record-antirecord

erec - exclusive record

earec - exclusive antirecord

nrar - neither record-antirecord

14 50
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Record-and-cycle classification

Each i is one of the following ten (not 20) types:

cpeak cval cdrise cdfall fix
erec ereccval ereccdrise
earec eareccpeak eareccdfall

rar rar
nrar nrcpeak nrcval nrcdrise nrcdfall nrfix

15 50
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Continued fractions counting permutation statistics

Consider 10-variable polynomials

Pn(x1, x2, y1, y2, u1, u2, v1, v2,w, z) =

∑
σ∈Sn

x
eareccpeak(σ)
1 x

eareccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2 zrar(σ)

×

u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wnrfix(σ)

Theorem (Sokal–Zeng (2022) First J-fraction for permutations)

∞
∑
n=0

Pn(x1, x2, y1, y2, u1, u2, v1, v2,w, z)t
n

=
1

1 − z ⋅ t −
x1 y1 ⋅ t

2

1 − (x2 + y2 +w) ⋅ t −
(x1 + u1)(y1 + v1) ⋅ t

2

1 − ((x2 + u2) + (y2 + v2) +w) ⋅ t −
(x1 + 2u1)(y1 + 2v1) ⋅ t

2

1 − ⋱

Proof uses the Foata–Zeilberger bijection (1990)
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Can we count cycles as well?

Consider 11-variable polynomials

Pn(x1, x2, y1, y2, u1, u2, v1, v2,w, z) =

∑
σ∈Sn

x
eareccpeak(σ)
1 x

eareccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2 zrar(σ)

×

u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wnrfix(σ)λcyc(σ)

No nice J-fraction!
But can obtain J-fraction by specialising y1 = v1:

Conjecture (Sokal–Zeng (2022))
∞
∑
n=0

Pn(x1, x2, y1, y2, u1, u2, y1, v2,w, z, λ)t
n

=
1

1 − λz ⋅ t −
λx1 y1 ⋅ t

2

1 − (x2 + y2 + λw) ⋅ t −
(λ + 1)(x1 + u1)y1 ⋅ t

2

1 − ((x2 + v2) + (y2 + v2) + λw) ⋅ t −
(λ + 2)(x1 + 2u1)y1 ⋅ t

2

1 − ⋱
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Sokal–Zeng conjectured a continued fraction for 11 variable polynomials
involving one specialisation y1 = v1.

They could only prove with two specialisations y1 = v1 and y2 = v2

Second J-fraction for permutations

Used Biane bijection (1993).
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Genocchi and median Genocchi numbers

19 50



Genocchi numbers

The Genocchi numbers are given by

t tan(
t

2
) =

∞
∑
n=0

gn
t2n+2

(2n + 2)!

The first few numbers are 1,1,3,17,155,2073, . . ..
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Combinatorial Interpretation

Genocchi numbers:

D-e-semiderangements

gn = #{σ ∈S2n∣2i > σ(2i) and 2i − 1 ≤ σ(2i − 1)}

D-o-semiderangements

= #{σ ∈S2n∣2i ≥ σ(2i) and 2i − 1 < σ(2i − 1)}

Median Genocchi numbers:

D-permutations (introduced by Lazar and Wachs (2019))

hn+1 = ∣D2n∣ = #{σ ∈S2n∣2i ≥ σ(2i) and 2i − 1 ≤ σ(2i − 1)}

D-derangements

hn = #{σ ∈S2n∣2i > σ(2i) and 2i − 1 < σ(2i − 1)}

D — Dumont-like

21 50
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Continued fractions for median Genocchi numbers

The once-shifted median Genocchi numbers hn+1 have the following
Thron-type continued fraction

∞
∑
n=0

hn+1 t
n
=

1

1 − t −
1t

1 −
4t

1 −
4t

1 −
9t

1 −⋯

22 50



Story for Genocchi and median Genocchi

D.–Sokal (2024):

“First” (Cycles not counted) “Second” (Cycles counted)

Conjecture: 0-T-fraction
with 12-statistics

0-T-fraction with 12-statistics 0-T-fraction with 12-statistics
⇑ ⇑

p,q-generalisation: p,q-generalisation:
0-T-fraction with 22 statistics 0-T-fraction with 21 statistics

⇑ ⇑

Master T-fraction: Master T-fraction:
four infinite 2-parameter families three infinite 2-parameter families,
two infinite 1-parameter family three infinite 1-parameter families,

and one statistic for counting cycles
Proof: Proof:
FZ-like bijection Biane-like bijection

Variant forms with
slightly different statistics
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Randrianarivony–Zeng conjecture (1996)

Define the polynomials

Gn(x, y, x̄, ȳ) = ∑
σ∈Do

2n

xcomi(σ)ylema(σ)x̄cemi(σ)ȳremi(σ)
where

comi – odd cycle minima,
lema – left-to-right maxima whose value is even
cemi – even cycle minima
remi – right-to-left minima whose value is even

Conjecture

The ogf of the polynomials Gn(x, y, x̄, ȳ) has the following S-fraction

∞
∑
n=0

Gn(x, y, x̄, ȳ)t
n
=

1

1 −
xyt

1 −
1(x̄ + ȳ)t

1 −
(x + 1)(y + 1)t

1 −
2(x̄ + ȳ + 1)t

1 −
(x + 2)(y + 2)t

1 −
3(x̄ + ȳ + 2)t

⋯

(1)
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σ∈Do

2n

xcomi(σ)ylema(σ)x̄cemi(σ)ȳremi(σ)
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1 −
(x + 1)(y + 1)t

1 −
2(x̄ + ȳ + 1)t
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Plot twist for Sokal–Zeng conjecture

“First” (Cycles not counted) “Second” (Cycles counted)

Conjecture: J-fraction with 10 statistics
⇓

J-fraction with 10 statistics J-fraction with 9 statistics
⇑ ⇑

p,q-generalisation:
J-fraction with 18 statistics

p,q-generalisation:
J-fraction with 15 statistics

⇑ ⇑

Master J-fraction:
four infinite 2-parameter families
one infinite 1-parameter family

Master J-fraction:
three infinite 2-parameter families
two infinite 1-parameter family
and one statistic for counting cycles

✓◻
Proof:
Foata–Zeilberger bijection (1990)

⊠
Proof:
Biane bijection (1993)
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Conjectures of D.–Sokal, Randrianarivony–Zeng

“First” (Cycles not counted) “Second” (Cycles counted)

Conjecture: 0-T-fraction
with 12 statistics

0-T-fraction with 12 statistics 0-T-fraction with 12 statistics
⇑ ⇑

p,q-generalisation:
0-T-fraction with 22 statistics

p,q-generalisation
0-T-fraction with 21 statistics

⇑ ⇑

Master T-fraction: four infinite
2-parameter families
two infinite 1-parameter families

Master T-fraction:
three infinite 2-parameter families,
three infinite 1-parameter families,
and one statistic for counting cycles

✓◻ Proof:
FZ-like bijection

⊠ Proof:
Biane-like bijection

Variant forms Variant forms Ô⇒
Randrianarivony–Zeng (1996)
S-fraction with 4 statistics
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Pan–Zeng (’23) came up with multivariate continued fractions for other
objects enumerated by Genocchi numbers also introduced in work of
Lazar’s PhD thesis

27 50



Structure

1 Continued fractions and enumerative combinatorics
1 Classical continued fractions
2 Sokal–Zeng’s results for factorials
3 D.–Sokal’s results for Genocchi and median Genocchi numbers
4 Conjectures

2 Proof overview of existing results
1 Flajolet’s combinatorial interpretation
2 Foata–Zeilberger bijection

3 What’s new
1 Laguerre digraphs
2 New interpretation of the FZ bijection

4 The story continues . . .

28 50



Motzkin paths

Consider a Motzkin path, let’s say

β1

β2

β3

β4γ3

γ2

β4

Weight = β1β2β3β
2
4γ2γ3

Assign weights:

↗ : 1

→ from height i→ i : γi

↘ from height i→ (i − 1) : βi

29 50



Motzkin paths

Consider a Motzkin path, let’s say

β1

β2

β3

β4γ3

γ2

β4

Weight = β1β2β3β
2
4γ2γ3

Assign weights:

↗ : 1

→ from height i→ i : γi

↘ from height i→ (i − 1) : βi

29 50



Motzkin paths

Consider a Motzkin path, let’s say

β1

β2

β3

β4γ3

γ2

β4

Weight = β1β2β3β
2
4γ2γ3

Assign weights:

↗ : 1

→ from height i→ i : γi

↘ from height i→ (i − 1) : βi

29 50



Motzkin paths

Consider a Motzkin path, let’s say

β1

β2

β3

β4γ3

γ2

β4

Weight = β1β2β3β
2
4γ2γ3

Assign weights:

↗ : 1

→ from height i→ i : γi

↘ from height i→ (i − 1) : βi

29 50



Motzkin paths

Consider a Motzkin path, let’s say

β1

β2

β3

β4γ3

γ2

β4

Weight = β1β2β3β
2
4γ2γ3

Assign weights:

↗ : 1

→ from height i→ i : γi

↘ from height i→ (i − 1) : βi

29 50



Combinatorial Interpretation of J-fraction

J-fraction

1

1 − γ0t −
β1t

2

1 − γ1t −
β2t

2

1 − γ2t −
β3t

2

⋱

=
∞
∑
n=0

ant
n

Theorem (Flajolet ’80)

The an are weighted sum of Motzkin paths with n steps.

Stieltjes-type continued fractions — weighted Dyck paths (Flajolet
’80)

Thron-type continued fractions — weighted Schröder paths
(Oste–Van der Jeugt (2015), Fusy–Guitter(2017), Josuat-Vergès
(2018), Sokal (unpublished))

Gateway for proving continued fractions using bijective combinatorics :-D
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Foata–Zeilberger bijection

31 50



excedance indices F = {i ∈ σ ∶ σ(i) > i} = Cdrise ∪ Cval

excedance values F ′
= {i ∈ σ ∶ i > σ−1

(i)} = Cdrise ∪ Cpeak
antiexcedance indices G = {i ∈ σ ∶ σ(i) < i} = Cdfall ∪ Cpeak
antiexcedance values G′

= {i ∈ σ ∶ i < σ−1
(i)} = Cdfall ∪ Cval

fixed points H = {i ∈ σ ∶ i = σ(i)} = Fix

A permutation can be fully described the following data:

Sets F,F ′,G,G′,H
σ∣F ∶ F → F ′

σ∣G ∶ G→ G′
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Foata–Zeilberger bijection

Foata–Zeilberger bijection:

σ ↦ (ω, ξ)

where

ω is a Motzkin path, where the level steps come in three different
colours (red, blue, green)
Correspond to F,F ′,G,G′,H
ξ = (ξ1, . . . , ξn) are labels on the steps of the Motzkin paths
Correspond to σ∣F ∶ F → F ′ and σ∣G ∶ G→ G′
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Description of σ → ω

If i is a cycle valley, step i is ↗

If i is a cycle peak, step i is ↘

If i is a cycle double rise, cycle double fall or fixed, step i is →, → or
→ respectively.
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Description of labels σ → ξ

For i ∈ [n]

ξi =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

#{j∶ j < i and σ(j) > σ(i)} if σ(i) > i if i ∈ Cval ∪ Cdrise

#{j∶ j > i and σ(j) < σ(i)} if σ(i) < i if i ∈ Cpeak ∪ Cdfall

0 if σ(i) = i if i ∈ Fix

35 50



An example

Let σ = 715492638 = (1762)(3598)(4) ∈S9.

- Cval = {1,3} - Cpeak = {7,9} - Cdrise = {5} -
Cdfall = {2,6,8}

- Fix = {4}

The Motzkin path ω is

The labels ξ and the sets F,F ′,G,G′ are:
i ∈ F 1 3 5

σ(i) ∈ F ′ 7 5 9
ξi 0 1 0

i ∈ G 2 6 7 8 9
σ(i) ∈ G′ 1 2 6 3 8

ξi 0 0 1 0 0
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Structure

1 Continued fractions and enumerative combinatorics
1 Classical continued fractions
2 Sokal–Zeng’s results for factorials
3 D.–Sokal’s results for Genocchi and median Genocchi numbers
4 Conjectures

2 Proof overview of existing results
1 Flajolet’s combinatorial interpretation
2 Foata–Zeilberger bijection

3 What’s new
1 Laguerre digraphs
2 New interpretation of the FZ bijection

4 The story continues . . .
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Laguerre digraph

Definition

A Laguerre digraph of size n is a directed graph on vertex set {1, . . . , n}
where each vertex has indegree 0 or 1 and outdegree 0 or 1.

Example:

Connected components

Directed cycle

Directed paths

Generalise permutations

38 50



Laguerre digraph

Definition

A Laguerre digraph of size n is a directed graph on vertex set {1, . . . , n}
where each vertex has indegree 0 or 1 and outdegree 0 or 1.

Example:

Connected components

Directed cycle

Directed paths

Generalise permutations

38 50



Laguerre digraph

Definition

A Laguerre digraph of size n is a directed graph on vertex set {1, . . . , n}
where each vertex has indegree 0 or 1 and outdegree 0 or 1.

Example:

Connected components

Directed cycle

Directed paths

Generalise permutations

38 50



Laguerre digraph

Definition

A Laguerre digraph of size n is a directed graph on vertex set {1, . . . , n}
where each vertex has indegree 0 or 1 and outdegree 0 or 1.

Example:

Connected components

Directed cycle

Directed paths

Generalise permutations

38 50



An equivalent object with a different definition was introduced by
Foata–Strehl (1984) — Laguerre configurations

Other authors often use partial permutations

Laguerre digraphs after Sokal (2022)
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“History” of Foata–Zeilberger bijection

Start with all n vertices and no edges

At each stage insert edges i→ σ(i) in the following order:

Stage (a): i ∈H (fixed points) in increasing order

Stage (b): i ∈ G (antiexcedances) in increasing order

Stage (c): i ∈ F (excedances) in decreasing order

This order is suggested by the inverse bijection and the inversion tables
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History with an example

Let σ = 715492638 = (1762)(3598)(4) ∈S9.

H = {4}

i ∈ F 1 3 5
σ(i) ∈ F ′ 7 5 9

ξi 0 1 0

i ∈ G 2 6 7 8 9
σ(i) ∈ G′ 1 2 6 3 8

ξi 0 0 1 0 0

1

2

3

4

5

6

7

8 9
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Structure

1 Continued fractions and enumerative combinatorics
1 Classical continued fractions
2 Sokal–Zeng’s results for factorials
3 D.–Sokal’s results for Genocchi and median Genocchi numbers
4 Conjectures

2 Proof overview of existing results
1 Flajolet’s combinatorial interpretation
2 Foata–Zeilberger bijection

3 What’s new
1 Laguerre digraphs
2 New interpretation of the FZ bijection

4 The story continues . . .
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Remarks

Flajolet’s 1980 paper allowed continued fractions with non-commutative
variables

However, for this work, it is very important that the variables commute

So there must be non-commutative analogues of continued fractions
coming from Biane bijection
or Françon–Viennot bijection (partially done by Kuba–Varvak ’21)
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or Françon–Viennot bijection

(partially done by Kuba–Varvak ’21)

43 50



Remarks

Flajolet’s 1980 paper allowed continued fractions with non-commutative
variables

However, for this work, it is very important that the variables commute

So there must be non-commutative analogues of continued fractions
coming from Biane bijection
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A conjecture of Baril and Kirgizov

Baril and Kirgizov (2021) conjectured the following equidistribution of
statistics on Sn:

Conjecture

The bistatistics (des2, cyc) and (pex,cyc) are equidistributed.

Han–Mao–Zeng (2021) showed that this conjecture is equivalent to the
following:

Conjecture

∞
∑
n=0

ydes2σλcycσ
=

1

1 − λz −
λyz2

1 − (λ + 2)z −
(λ + 1)(y + 1)z2

. . .

How do we resolve this???
An index i is a descent of type 2 if i is a descent and i is a record
(left-to-right maxima)
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Merci pour votre attention
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Sokal–Zeng’s master J-fraction
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Pictorial representation

v
1

v
2

v
3

v
4

v
5
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6

v
7

v
8

v
9

v
10

v
11

v
12

v
13

v
14

σ = 7 1 9 2 5 4 8 6 10 3 11 12 14 13 =

(1,7,8,6,4,2) (3,9,10) (5) (11) (12) (13,14) ∈S14.

Due to Corteel (2007)
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Crossings, nestings and pseudo-nestings

u
i

u
j

u
k

u
l

Upper crossing

u
i

u
j

u
k

u
l

Lower crossing

u
i

u
j

u
k

u
l

Upper nesting

u
i

u
j

u
k

u
l

Lower nesting

ucross(j, σ) lcross(k, σ)

unest(j, σ) lnest(k, σ)

u
i

u
j

u
l

Upper pseudo-nesting

u
i

u
j

u
l

Lower pseudo-nesting
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Sokal–Zeng first master J-fraction for permutations

Qn(a,b, c,d,e) =

∑
σ∈Sn

∏
i∈Cval(σ)

aucross(i,σ),unest(i,σ) ∏
i∈Cpeak(σ)

blcross(i,σ), lnest(i,σ) ×

∏
i∈Cdfall(σ)

clcross(i,σ), lnest(i,σ) ∏
i∈Cdrise(σ)

ducross(i,σ),unest(i,σ) ×

∏
i∈Fix(σ)

epsnest(i,σ)

Theorem

∞
∑
n=0

Qn(a,b, c,d,e)t
n
=

1

1 − γ0t −
β1t

2

1 − γ1t −
β2t

2

1 − γ2t −
β3t

2

⋱

γk = (
k−1

∑
ξ=0

ck−1−ξ,ξ) + (
k−1

∑
ξ=0

dk−1−ξ,ξ) + ek

βk = (
k−1

∑
ξ=0

ak−1−ξ,ξ)(
k−1

∑
ξ=0

bk−1−ξ,ξ)
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(D. arxiv ’23) master J-fraction for permutations
Qn(a,b, c,d,e, λ) =

∑
σ∈Sn

∏
i∈Cval(σ)

aucross(i,σ)+unest(i,σ) ∏
i∈Cpeak(σ)

blcross(i,σ), lnest(i,σ) ×

∏
i∈Cdfall(σ)

clcross(i,σ), lnest(i,σ) ∏
i∈Cdrise(σ)

ducross(i,σ),unest(i,σ) ×

∏
i∈Fix(σ)

epsnest(i,σ) λ
cyc(σ)

Theorem

∞
∑
n=0

Qn(a,b, c,d,e, λ)t
n
=

1

1 − γ0t −
β1t

2

1 − γ1t −
β2t

2

1 − γ2t −
β3t

2

⋱

γk = (
k−1

∑
ξ=0

ck−1−ξ,ξ) + (
k−1

∑
ξ=0

dk−1−ξ,ξ) + λek

βk = (λ + k − 1) ak−1(
k−1

∑
ξ=0

bk−1−ξ,ξ)
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