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> Orders on Dyck paths --- The ascent order

> Lattice properties (the Nadeau-Tewari lattice)
> Counting intervals

> m-Dyck paths, and mirrored m-Dyck paths

» Connection with the sylvester congruence [Hivert, Novelli, Thibon 05]



. Orders on Dyck paths




Dyck paths

« A Dyck path of size n=8 (size=number of up steps)
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Stanley’s lattice Sn

A poset on Dyck paths of size n

Def. The path u is smaller than v if u lies below v.
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Stanley’s lattice Sn

A poset on Dyck paths of size n

Def. The path u is smaller than v if u lies below v.

« Cover relations are given by

EN — NE (that is, valley — peak)
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o A sub-lattice of the Young lattice

N
« Graded (by area) { rI—
N I_{r/
N=3

© Knuth, The Art of Computer Programming, vol. 4




The Tamari lattice [Tamari 511

« A poset on Dyck paths with n up steps
« Cover relations: choose a valley in the path u.

Swap the East step and the shortest Dyck path that follows.
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The Tamari lattice [Tamari 511

« A poset on Dyck paths with n up steps
« Cover relations: choose a valley in the path u.

Swap the East step and the shortest Dyck path that follows.
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The ascent poset (or: greedy Stanley?)

« A poset on Dyck paths with n up steps
« Cover relations: choose a valley in the path u.

Swap the down step and the lascent that follows.

(the path moves up)

[Cheneviere, Nadeau...]



Ascent posets: n = 3, 4
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Poset inclusion

alt-Tamari
Kreweras 12 \ [Cheneviere 22(a)]
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A characterization of the ascent order

Proposition. In the ascent poset, P < Q iff

¢ Plies below Q

¢ every descent of Q is (i.e. lies on the same diagonal as)
a descent of P.
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A characterization of the ascent order

Proposition. In the ascent poset, P < Q iff

¢ Plies below Q

¢ every descent of Q is (i.e. lies on the same diagonal as)
a descent of P,

Applications:
« lattice structure
+ recursive construction of intervals



Il. Lattice structure

(Each pair of elements has a sup and an inf)



The Nadeau- Tewari poset

Def. Let u=(w, .., un) and v=(v), ..., vn) be two nonincreasing
sequences of integers. Then u = v for the NT order if

o U lies below v (U < vj)

e every descent of v is a descent of u.
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The Nadeau- Tewari poset

Def. Let u=(w, .., un) and v=(v), ..., vn) be two nonincreasing
sequences of integers. Then u = v for the NT order if

o U lies below v (U < vj)

. every descent of vis a descent of u.
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The Nadeau- Tewari poset

Def. Let u=(w, .., un) and v=(v), ..., vn) be two nonincreasing
sequences of integers. Then u = v for the NT order if

e U lies below v (Ui = vj)
.« cvery descent of vis a descent of u.

Observation: Dyck paths of size n can be encoded by nonincreasing
sequences of length n, and then the ascent order coincides with the

NT order. y
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The Nadeau- Tewari poset and the ascent order

Observation: The ascent order is the order induced by the NT order
on sequences u=(u, .. , Un) such that n-i+1 = u; = n for all i.

V = (8' 81 6' 6' 6' 6’ 5’ 5)

— u=(8,71 6 6 65 3 1)
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The Nadeau- Tewari poset and the ascent order

Observation: The ascent order is the order induced by the NT order
on sequences u=(u, .. , Un) such that n-i+1 = u; = n for all i.

These sequences form an with Umin = (M, N-, ..., 1) and
Umax = (N, N, .., N).

Proposition [NT 24-1: the NT posetis a

Corollary. The ascent order on Dyck paths of size n defines a
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The Nadeau- Tewari poset and the ascent order

Corollary. The ascent order on Dyck paths of size n defines a
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Corollary. The ascent order on Dyck paths of size n defines a

Join(P,@): the lowest Dyck path above P and Q whose descents are
included in des(P) and in des(Q).
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The Nadeau- Tewari poset and the ascent order

Corollary. The ascent order on Dyck paths of size n defines a

Join(P,@): the lowest Dyck path above P and Q whose descents are
included in des(P) and in des(Q).

Meet(P,Q): the highest Dyck path below P and Q whose descents
contain those of P and Q.

N join




l1l. The number of

intervals

Interval [P,Q] ~ (P,Q) with P < Q



Recursive construction of ascent intervals
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Recursive construction of ascent intervals

Proposition. In the ascent poset, P < Q iff

¢ Plies below Q

¢ every descent of Q is (i.e. lies on the same diagonal as) a
descent of P.

Corollary: if [P,Q]is an interval, deleting the last peak of P and the
last peak of Q gives a new interval.



Recursive construction of ascent intervals

Conversely, starting from an interval [P,Q]1 with final peaks at
heights a = b, adding peaks in P and Q at heights a' and b’ gives an
interval iff...
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Recursive construction of ascent intervals

Conversely, starting from an interval [P,Q]1 with final peaks at
heights a = b, adding peaks in P and Q at heights a' and b’ gives an
interval iff...

o I1=ad =0t I1=b = btl
e 0 <D
o if a =a+)then b' = b+l
A
A
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Recursive construction of ascent intervals

Conversely, starting from an interval [P,Q]1 with final peaks at
heights a = b, adding peaks in P and Q at heights a' and b’ gives an
interval iff..

o I1=ad =0t I1=b = btl
e O <D

o if @' =a+)then b'=b+l.
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Recursive construction of ascent intervals

e Let Q(tix,y)=Q(x,y) be the GF of the associated quadrant walks:

Q(X, y) — Z t|W|X1(W)yJ (w) .

w

Then the GF of ascent intervals is G=tQ(],)=Q(0,0)-.
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Recursive construction of ascent intervals

e Let Q(tix,y)=Q(x,y) be the GF of the associated quadrant walks:

Q(x,y) Z it

Then the GF of ascent intervals is G=tQ(],)=Q(0,0)-.

* Step-by-step description of the walks:
2 XQ%y) —yQy,y)  *xQx 1) —Q0,T)

Qlx,y) =1+ txQ(x,y) + ty x—y)(y—1) (x—1)(y—1)




A functional equation with two catalytic variables

* The GF of ascent intervals is tQ(),)), where Q(x,y)=Q(tix,y) satisfies:

2 XQy) —yQy,y)  *xQx, 1) —QU, 1)
(x—y)(y—1) (x=1)(y-1)

Qlx,y) =1+ txQ(x,y) + ty

Walks in the quadrant: a much studied topic !
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A functional equation with two catalytic variables

* The GF of ascent intervals is tQ(),)), where Q(x,y)=Q(tix,y) satisfies:

2 XQ%y) —yQy,y)  *xQx 1) —QU, 1)

QLo y) = T4+ xQbo Y+ 1™ = 7 vy 1) x—1y—1

Walks in the quadrant: a much studied topic !

Thm. Ascent intervals have an algebraic GF, namely

G=2Z7Z(1-2Z+27°), where Z=t(1+2)1+22)°.

Uses [Bernardi, mbm, Raschel 17(a)]

Asymptotics:
g(n) ~ku™n=’/2 with W

11+5V5
- .



IV. m-Dyck paths,

and mirrored m-Dyck paths
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m-Dyck paths and mirrored m-Dyck paths

In an , the length of all is a multiple of m.
N a , the length of all is a multiple of m.
m=2

— Study the order induced by the ascent order on m-Dyck paths
and mirrored m-Dyck paths.
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m-Dyck paths

m-Dyck paths form an

in the ascent lattice Amn, with
min = (U™D™)"

max = UM DM,

In particular, it is a




Mirrored m-Dyck paths

Mirrored m-Dyck paths only
form a




What about intervals?




What about intervals?

Intervals in m-Dyck paths:

+ Stanley lattice: (i.e., linear DE with pol. coeff's)

2m+2)(m+T)n)(m+1)(n+1))!
n!n+1)!(mn+2)(mnh+2)+ 2)!

o Tamari lattice: [mbm, Fusy, Preville-Ratelle 1]
m+ 1 (m+1)2n+m> Coni.
) Ber
n(mn+1)< n—1 Prey; Jeron,
eV///e~/QmLe/ o
¢ Greedy Tamari lattice: [mbm, Chapoton 24]

(m+2)(m+ 1) ((m+ 1)n>
(mn +1)(mn + 2) n '



What about intervals?

Intervals in mirrored m-Dyck paths:

+ Stanley lattice: (i.e., linear DE with pol coeff's)

2m+2)(m+T)n)(m+1)(n+1))!
n!n+1)!(mn+2)(mnh+2)+ 2)!

e Tamarilattice ¢

+ Greedy Tamari lattice 7



What about ascent intervals®?

m-Dyck paths: delete the large peak U™D™ — quadrant walks.
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What about ascent intervals®?

m-Dyck paths: delete the large peak U™D™ — quadrant walks.

For m>], the exponent a is . and hence
the GF of intervals

[Bostan, Raschel, Salvy 14-]

* Asymptotics (from random walk results)  [Denisov & Wachtel 15]
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Mirrored m-Dyck paths: delete the large peak UMD™ = quadrant
walks.
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What about ascent intervals®?

Mirrored m-Dyck paths: delete the large peak UMD™ = quadrant
walks.

* The GF of ascent intervals is tQ(],)), where Q(x,y)=Q(tix,y) satisfies:
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Mirrored m-Dyck paths: delete the large peak UMD™ = quadrant
walks.

* The GF of ascent intervals is tQ(],)), where Q(x,y)=Q(tix,y) satisfies:

Q(X)U) — 14+ txmyQ(X>3)__1Q(X> 1)

ZXmQ(X>U)_Q(1>U) o Xma(x>1)_6(1>”
B Ry ST R Y Y SR

* Asymptotics (from random walk results) [Denisov & Wachtel 15]

gm(n) ~ ku'n®,

where u—m\/m2+4+m2+2 <2+¢m2+4>m
B 2 | m

and

x = —1 — 7t/ arccos(c) with C = \/

1 4+2m2 —mv1+4m?
2(3m?2 +1) '



What about ascent intervals®?

Mirrored m-Dyck paths: delete the large peak UMD™ = quadrant
walks.

For m>], the exponent a is . and hence
the GF of intervals

[Bostan, Raschel, Salvy 14-]
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V. Connection with the
sylvester congruence

[Hivert, Novelli, Thibon 05]
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In the OEIS...

Observation: for m=], 2, ..., 5, the sequence gm(n) that counts
intervals of mirrored m-Dyck paths appears in the OEIS.

* m=l: number of sylvester classes of I-multiparking functions

* m=2: number of sylvester classes of 2-multiparking functions

and so on.
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The sylvester congruence

e Defined on words on the alphabet Z

* Generated by commutation relations:
ac---b=ca---b,

* Class representatives: words avoiding

called sylvester words.

a<b<c.

and

(as subwords),
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The sylvester congruence

e Defined on words on the alphabet Z

* Generated by commutation relations:

ac---b=ca---b, a<b<ec.

* Class representatives: words avoiding

called sylvester words.

Example:
2 4 - 24
533- 533
4 3= 4

and (as subwords),

3, sylvester word



The Nadeau-Tewari lattice

Def. Let u=(w, .., un) and v=(v, ..., vn) be two nonincreasing
sequences of integers. Then u = v for the NT order if

o U lies below v (U < vj)

e every descent of v is a descent of u.

v=(0,10,10,10, G, 4) 10 ===
08 N
w=(0,10,8,87,3) 5 T
6
S
A
B o



From sylvester words to Nadeau-Tewari intervals

Example. Fix n=6 and a sylvester word w on the alphabet {], 2, .., N1,
containing the letter |, sayw=32222511165.
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From sylvester words to Nadeau-Tewari intervals

Example. Fix n=6 and a sylvester word w on the alphabet {], 2, .., N1,
containing the letter |, sayw=32222511165.

Letw)=Ninc(w)=5532222111 be its nonincreasing reordering.

Let w2z =LRMin(w)=3222221111 be the largest nonincreasing
word that is smaller than w, componentwise.
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From sylvester words to Nadeau-Tewari intervals

Example. Fix n=6 and a sylvester word w on the alphabet {], 2, .., N1,
containing the letter |, sayw=32222511165.

Letw)=Ninc(w)=5532222111 be its nonincreasing reordering.

Let w2z =LRMin(w)=3222221111 be the largest nonincreasing
word that is smaller than w, componentwise.

e Write w) and w2 vertically as follows: _
* Complete with n=6 horizontal steps to _h:_E
form two ES paths. SRS O SO S-S

r

f
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From sylvester words to Nadeau-Tewari intervals

Example. Fix n=6 and a sylvester word w on the alphabet {], 2, .., N1,

containing the letter |, sayw=3222251115.

Letw)=Ninc(w)=5532222111 be its nonincreasing reordering.

Let w2z =LRMin(w)=3222221111 be the largest nonincreasing

word that is smaller than w, componentwise.

e Write w) and w2 vertically as follows: : _—

i A
e Complete with n=6 horizontal steps to 6 il B
form two ES paths. § Geecdendeedrion SR

T O =
e The horizontal words u=10108 8 1 3 3 ---------------------- —:._
and v =10101010 9 4, of length n=6, form 2 ot
an interval in the Nadeau-Tewari lattice. 1 it 2



From sylvester words to Nadeau-Tewari intervals

Proposition. For any n, this construction gives a bijection between:

¢ sylvester words w on the alphabet {1, 2, .., n} containing the

letter 1, and

¢ intervals Lu,v]in the NT lattice, such that u and v have length n,

and the

Example
Forn=6andw=3222251115, we
have u=10108 8 73 and v=10101010 9 4.
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From sylvester words to Nadeau-Tewari intervals

Proposition. For any n, this construction gives a bijection between:

¢ sylvester words w on the alphabet {1, 2, .., n} containing the

letter 1, and

¢ intervals Lu,v]in the NT lattice, such that u and v have length n,

and the

Example
Forn=6andw=3222251115, we
have u=10108 8 73 and v=10101010 9 4.

Conversely?
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From sylvester words to Nadeau-Tewari intervals

Conversely?
« Starting fromu=101088 713 and v =10101010 9 4, recover the

verticalwordsw=553222211)1 andw2=3222221111:
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& i R S
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From sylvester words to Nadeau-Tewari intervals

Conversely?
« Starting fromu=101088 713 and v =10101010 9 4, recover the

verticalwordsw=553222211)1 andw2=3222221111:

same length (10),
contain |,

w2 is less than w) (componentwise) 1) E—
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From sylvester words to Nadeau-Tewari intervals

Conversely?
« Starting fromu=101088 713 and v =10101010 9 4, recover the

verticalwordsw=553222211)1 andw2=3222221111:

same length (10),
contain |,

w2 is less than w) (componentwise) 1) E—

« Recover w from wy = NInc(w) SR SO S-S S S
w=_ /T ;_:
R T Er T py ','_é ..

D el %

avoids aba and aCb 1 ........................... E

O ...................................
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From sylvester words to Nadeau-Tewari intervals

Conversely?
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Conversely?
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From sylvester words to Nadeau-Tewari intervals

Conversely?
« Starting fromu=101088 713 and v =10101010 9 4, recover the

verticalwordsw=553222211)1 andw2=3222221111:

same length (10),
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From sylvester words to Nadeau-Tewari intervals

Conversely?
« Starting fromu=101088 713 and v =10101010 9 4, recover the
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From sylvester words to Nadeau-Tewari intervals

Conversely?
« Starting fromu=101088 713 and v =10101010 9 4, recover the
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From sylvester words to Nadeau-Tewari intervals

Conversely?
« Starting fromu=101088 713 and v =10101010 9 4, recover the

verticalwordsw=553222211)1 andw2=3222221111:

same length (10),
contain |,

w2 is less than w) (componentwise)
alph(w2) C alph(wy).

« Recover w from wj = NInc(w) lett(w)={5 11}
and w2 = LRMin(w) ¢
w=3222251_ _ _
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From sylvester words to Nadeau-Tewari intervals

Conversely?
« Starting fromu=101088 713 and v =10101010 9 4, recover the

verticalwordsw=553222211)1 andw2=3222221111:

same length (10),
contain |,

w2 is less than w) (componentwise)
alph(w2) C alph(wy).

« Recover w from wj = NInc(w) lett(w)={5 11}
and w2 = LRMin(w) ¢
w=3222251115

Nnon-dec.

avoids aba and acb



From sylvester words to Nadeau-Tewari intervals

Proposition. For any n, this construction gives a bijection between:

¢ sylvester words w on the alphabet {1, 2, .., n} containing the
letter 1, and

¢ intervals Lu,v]in the NT lattice, such that u and v have length n,
ond the



From sylvester words to Nadeau-Tewari intervals

Proposition. For any n, this construction gives a bijection between:

¢ sylvester words w on the alphabet {1, 2, .., n} containing the
letter 1, and

¢ intervals Lu,v]in the NT lattice, such that u and v have length n,
ond the

Specializations: bijections between
» positive sylvester words w of length mn such that

Ninc(w) = n™ (n-)™ ... 2™ 1" and ascent intervals of m-Dyck paths
of length mn

+ positive sylvester words w of length n such that
Ninc(w) = ((N-Dm=+)) ... (2m+)) (m+)) 1 and ascent intervals of
mirrored m-Dyck paths of length mn.
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Final remarks

e Combinatorial proof for the number/GF of ascent intervals? (m=])

Mm+4)(2n+7)gmn+2)=2(1Tn* +44n+42)gn+1)+n(2n+1) g(n)

* A symmetric joint distribution on ascent intervals [P,Q] (m=]):

a(P) = length of the first ascent of P

r(P,Q) = number of ascents of P before the first descent of Q

Example. a(P)=], r(P,Q)=2 ThanS fOr 5
(Non-recursive) ? aﬁenﬁcny ur

e Study mirrored m-Dyck paths in other Dyck lattices: intervals?

* Poset properties? (shellability, geometric realizations...)
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