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Outline

➔ Orders on Dyck paths --- The ascent order

➔ Lattice properties (the Nadeau-Tewari lattice)

➔ Counting intervals

➔ m-Dyck paths, and mirrored m-Dyck paths

➔ Connection with the sylvester congruence [Hivert, Novelli,Thibon 05]



I. Orders on Dyck paths
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Dyck paths

● A Dyck path of size n=8 (size=number of up steps)

valleys (DU)

U U D D U U U U D U U D D D D D
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Dyck paths

● A Dyck path of size n=8 (size=number of up steps)

valleys (EN)
valleys (DU)

U U D D U U U U D U U D D D D D
N N E E ...
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Stanley’s lattice Sn

A poset on Dyck paths of size n
Def. The path u is smaller than v if u lies below v.

n=3
© Knuth, The Art of Computer Programming, vol. 4 
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Stanley’s lattice Sn

A poset on Dyck paths of size n
Def. The path u is smaller than v if u lies below v.

● Cover relations are given by 
EN → NE (that is, valley → peak)

n=3
© Knuth, The Art of Computer Programming, vol. 4 
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Stanley’s lattice Sn

A poset on Dyck paths of size n
Def. The path u is smaller than v if u lies below v.

● Cover relations are given by 
EN → NE (that is, valley → peak)

● A sub-lattice of the Young lattice

n=3
© Knuth, The Art of Computer Programming, vol. 4 
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Stanley’s lattice Sn

A poset on Dyck paths of size n
Def. The path u is smaller than v if u lies below v.

● Cover relations are given by 
EN → NE (that is, valley → peak)

● A sub-lattice of the Young lattice

● Graded (by area)

n=3
© Knuth, The Art of Computer Programming, vol. 4 
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● A poset on Dyck paths with n up steps
● Cover relations: choose a valley in the path u. 

Swap the East step and the  shortest Dyck path  that follows.
                                                                                    

The Tamari lattice                                     [Tamari 51]

⋖valley

u v
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● A poset on Dyck paths with n up steps
● Cover relations: choose a valley in the path u. 

Swap the East step and the  shortest Dyck path  that follows.
                                                                                    

The Tamari lattice                                     [Tamari 51]

⋖valley

u v

n=3
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● A poset on Dyck paths with n up steps
● Cover relations: choose a valley in the path u. 

Swap the East step and the  shortest Dyck path  that follows.
                                                                                    

The Tamari lattice                                     [Tamari 51]

⋖valley

u v

notgraded

n=3
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● A poset on Dyck paths with n up steps
● Cover relations: choose a valley in the path u. 

Swap the East step and the  shortest Dyck path  that follows.
                                                                                    

The Tamari lattice                                     [Tamari 51]

notgraded

n=3

Stanley
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The ascent poset (or: greedy Stanley?)
● A poset on Dyck paths with n up steps
● Cover relations: choose a valley in the path u. 

Swap the down step and the  ascent  that follows.
(the path moves up)
                                                                                    

⋖
u v

[Chenevière, Nadeau...]
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Ascent posets: n = 3, 4
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Ascent posets: n = 3, 4
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Poset inclusion

Greedy Tamari
[Dermenjian 23]

Kreweras 72

Pyramid
[Baril et al. 23(a)]

Tamari 51

alt-Tamari
[Chenevière 22(a)]

Ascent

Stanley
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A characterization of the ascent order

Proposition. In the ascent poset, P ≼ Q iff 
 P lies below Q 
 every descent of Q is (i.e. lies on the same diagonal as) 

a descent of P.

Q

P
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A characterization of the ascent order

Proposition. In the ascent poset, P ≼ Q iff 
 P lies below Q 
 every descent of Q is (i.e. lies on the same diagonal as) 

a descent of P.

Q

P
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A characterization of the ascent order

Proposition. In the ascent poset, P ≼ Q iff 
 P lies below Q 
 every descent of Q is (i.e. lies on the same diagonal as) 

a descent of P.

Applications:
 lattice structure
 recursive construction of intervals

Q

P



II. Lattice structure

(Each pair of elements has a sup and an inf)
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The Nadeau-Tewari poset                     [2024]

Def. Let u=(u1, … , un) and v=(v1, … , vn) be two nonincreasing 
sequences of integers. Then u ≤ v for the NT order if
● u lies below v (ui  ≤ vi)
● every descent of v is a descent of u.

2

4

5

6

3

7

8

9

10

u / v
v = (10, 10, 10, 10, 9, 4)

u = (10, 10, 8, 8, 7, 3)
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The Nadeau-Tewari poset                     [2024]

Def. Let u=(u1, … , un) and v=(v1, … , vn) be two nonincreasing 
sequences of integers. Then u ≤ v for the NT order if
● u lies below v (ui  ≤ vi)
● every descent of v is a descent of u.

2

4

5

6
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u / v
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The Nadeau-Tewari poset                     [2024]

Def. Let u=(u1, … , un) and v=(v1, … , vn) be two nonincreasing 
sequences of integers. Then u ≤ v for the NT order if
● u lies below v (ui  ≤ vi)
● every descent of v is a descent of u.

2

4

5

6

3

7

8
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u / v
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The Nadeau-Tewari poset                     [2024]

Def. Let u=(u1, … , un) and v=(v1, … , vn) be two nonincreasing 
sequences of integers. Then u ≤ v for the NT order if
● u lies below v (ui  ≤ vi)
● every descent of v is a descent of u.

2

4

5

6

3

7

8

9

10

u / v

0

n=8

u = (8, 7, 6, 6, 6, 5, 3, 1)

v = (8, 8, 6, 6, 6, 6, 5, 5)
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The Nadeau-Tewari poset                     [2024]

Def. Let u=(u1, … , un) and v=(v1, … , vn) be two nonincreasing 
sequences of integers. Then u ≤ v for the NT order if
● u lies below v (ui  ≤ vi)
● every descent of v is a descent of u.
Observation: Dyck paths of size n can be encoded by nonincreasing 
sequences of length n, and then the ascent order coincides with the 
NT order.

2

4

5

6

3

7

8

9

10

u / v

0

n=8

u = (8, 7, 6, 6, 6, 5, 3, 1)

v = (8, 8, 6, 6, 6, 6, 5, 5)
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u = (8, 7, 6, 6, 6, 5, 3, 1)

v = (8, 8, 6, 6, 6, 6, 5, 5)

The Nadeau-Tewari poset and the ascent order
Observation: The ascent order is the order induced by the NT order 
on sequences u=(u1, … , un) such that n-i+1 ≤ ui ≤ n for all i. 

0

n
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u = (8, 7, 6, 6, 6, 5, 3, 1)

v = (8, 8, 6, 6, 6, 6, 5, 5)

The Nadeau-Tewari poset and the ascent order
Observation: The ascent order is the order induced by the NT order 
on sequences u=(u1, … , un) such that n-i+1 ≤ ui ≤ n for all i. 
These sequences form an interval with umin = (n, n-1, … , 1) and 
umax = (n, n, … , n).

0

n
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u = (8, 7, 6, 6, 6, 5, 3, 1)

v = (8, 8, 6, 6, 6, 6, 5, 5)

The Nadeau-Tewari poset and the ascent order
Observation: The ascent order is the order induced by the NT order 
on sequences u=(u1, … , un) such that n-i+1 ≤ ui ≤ n for all i. 
These sequences form an interval with umin = (n, n-1, … , 1) and 
umax = (n, n, … , n).
Proposition [NT 24]: the NT poset is a lattice.

0

n
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u = (8, 7, 6, 6, 6, 5, 3, 1)

v = (8, 8, 6, 6, 6, 6, 5, 5)

The Nadeau-Tewari poset and the ascent order
Observation: The ascent order is the order induced by the NT order 
on sequences u=(u1, … , un) such that n-i+1 ≤ ui ≤ n for all i. 
These sequences form an interval with umin = (n, n-1, … , 1) and 
umax = (n, n, … , n).
Proposition [NT 24]: the NT poset is a lattice.
Corollary. The ascent order on Dyck paths of size n defines a lattice.

0

n
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The Nadeau-Tewari poset and the ascent order
Corollary. The ascent order on Dyck paths of size n defines a lattice.

P, Q meet

join
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The Nadeau-Tewari poset and the ascent order
Corollary. The ascent order on Dyck paths of size n defines a lattice.
Join(P,Q): the lowest Dyck path above P and Q whose descents are 
included in des(P) and in des(Q). 

P, Q meet

join
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The Nadeau-Tewari poset and the ascent order
Corollary. The ascent order on Dyck paths of size n defines a lattice.
Join(P,Q): the lowest Dyck path above P and Q whose descents are 
included in des(P) and in des(Q). 
Meet(P,Q): the highest Dyck path below P and Q whose descents 
contain those of P and Q.

P, Q meet

join



III. The number of 
intervals

Interval [P,Q] ~ (P,Q) with P ≼ Q
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Recursive construction of ascent intervals
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Recursive construction of ascent intervals

Proposition. In the ascent poset, P ≼ Q iff 
 P lies below Q 
 every descent of Q is (i.e. lies on the same diagonal as) a 

descent of P.

Q

P
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Recursive construction of ascent intervals

Proposition. In the ascent poset, P ≼ Q iff 
 P lies below Q 
 every descent of Q is (i.e. lies on the same diagonal as) a 

descent of P.

Q

P
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Recursive construction of ascent intervals

Proposition. In the ascent poset, P ≼ Q iff 
 P lies below Q 
 every descent of Q is (i.e. lies on the same diagonal as) a 

descent of P.

Corollary: if [P,Q] is an interval, deleting the last peak of P and the 
last peak of Q gives a new interval.

Q

P
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Recursive construction of ascent intervals
Conversely, starting from an interval [P,Q] with final peaks at 
heights a ≤ b, adding peaks in P and Q at heights a’ and b’ gives an 
interval iff...

a a’

b
b’

P

Q
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Recursive construction of ascent intervals
Conversely, starting from an interval [P,Q] with final peaks at 
heights a ≤ b, adding peaks in P and Q at heights a’ and b’ gives an 
interval iff...

  1 ≤ a’ ≤ a+1,    1 ≤ b’ ≤  b+1

a a’

b
b’

P

Q
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Recursive construction of ascent intervals
Conversely, starting from an interval [P,Q] with final peaks at 
heights a ≤ b, adding peaks in P and Q at heights a’ and b’ gives an 
interval iff...

  1 ≤ a’ ≤ a+1,    1 ≤ b’ ≤  b+1
 a’ ≤ b’

a a’

b
b’

P

Q
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Recursive construction of ascent intervals
Conversely, starting from an interval [P,Q] with final peaks at 
heights a ≤ b, adding peaks in P and Q at heights a’ and b’ gives an 
interval iff...

  1 ≤ a’ ≤ a+1,    1 ≤ b’ ≤  b+1
 a’ ≤ b’
 if a’ = a+1 then b’ = b+1. 

a a’

b
b’

P

Q
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Recursive construction of ascent intervals
Conversely, starting from an interval [P,Q] with final peaks at 
heights a ≤ b, adding peaks in P and Q at heights a’ and b’ gives an 
interval iff...

  1 ≤ a’ ≤ a+1,    1 ≤ b’ ≤  b+1
 a’ ≤ b’
 if a’ = a+1 then b’ = b+1. 

a

b

1



44

Recursive construction of ascent intervals
Conversely, starting from an interval [P,Q] with final peaks at 
heights a ≤ b, adding peaks in P and Q at heights a’ and b’ gives an 
interval iff...

  1 ≤ a’ ≤ a+1,    1 ≤ b’ ≤  b+1
 a’ ≤ b’
 if a’ = a+1 then b’ = b+1. 

i=a-1
j=b-a

a

b

i

j

1 0
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intervals of size n 
≈

quadrant walks of length n-1 starting 
from (0,0)

≈ 
quadrant walks of length n starting 

and ending at (0,0)

Recursive construction of ascent intervals
Conversely, starting from an interval [P,Q] with final peaks at 
heights a ≤ b, adding peaks in P and Q at heights a’ and b’ gives an 
interval iff...

  1 ≤ a’ ≤ a+1,    1 ≤ b’ ≤  b+1
 a’ ≤ b’
 if a’ = a+1 then b’ = b+1. 

Bijection

i

j

0
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intervals of size n 
≈

quadrant walks of length n-1 starting 
from (0,0)

≈ 
quadrant walks of length n starting 

and ending at (0,0)

Recursive construction of ascent intervals
• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

Then the GF of ascent intervals is G=tQ(1,1)=Q(0,0)-1.

Bijection

i

j

0
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Recursive construction of ascent intervals
• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

Then the GF of ascent intervals is G=tQ(1,1)=Q(0,0)-1.

• Step-by-step description of the walks:

i

j

0
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Recursive construction of ascent intervals
• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

Then the GF of ascent intervals is G=tQ(1,1)=Q(0,0)-1.

• Step-by-step description of the walks:

i

j

0
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• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

Walks in the quadrant: a much studied topic ! 
Very few algebraic cases.

A functional equation with two catalytic variables



50

• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

Walks in the quadrant: a much studied topic ! 
Very few algebraic cases.

A functional equation with two catalytic variables

where

Uses Tutte’s invariants                  [Bernardi, mbm, Raschel 17(a)]

Thm. Ascent intervals have an algebraic GF, namely 
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• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

Walks in the quadrant: a much studied topic ! 
Very few algebraic cases.

A functional equation with two catalytic variables

where

Asymptotics:
with 

Uses Tutte’s invariants                  [Bernardi, mbm, Raschel 17(a)]

Thm. Ascent intervals have an algebraic GF, namely 

                                                                                        



IV. m-Dyck paths,
and mirrored m-Dyck paths
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m-Dyck paths and mirrored m-Dyck paths

In an m-Dyck path, the length of all ascents is a multiple of m.

m=2
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m-Dyck paths and mirrored m-Dyck paths

In an m-Dyck path, the length of all ascents is a multiple of m.
In a mirrored m-Dyck path, the length of all descents is a multiple of m.

m=2
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m-Dyck paths and mirrored m-Dyck paths

In an m-Dyck path, the length of all ascents is a multiple of m.
In a mirrored m-Dyck path, the length of all descents is a multiple of m.

m=2

 → Study the order induced by the ascent order on m-Dyck paths 
and mirrored m-Dyck paths.
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m-Dyck paths

m=2
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m-Dyck paths

m-Dyck paths form an interval 
in the ascent lattice Amn, with
           min = (UmDm)n

          max = Umn Dmn.

In particular, it is a lattice.

m=2
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Mirrored m-Dyck paths

Mirrored m-Dyck paths only 
form a join semi-lattice. 

m=2
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What about intervals?
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What about intervals?
Intervals in m-Dyck paths:

 Stanley lattice: D-finite GF (i.e., linear DE with pol. coeffs)

 Tamari lattice: algebraic GF          [mbm, Fusy, Préville-Ratelle 11]

 Greedy Tamari lattice: algebraic GF           [mbm, Chapoton 24]

Conj: Bergeron, Prévil le-Ratelle 
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What about intervals?
Intervals in mirrored m-Dyck paths:

 Stanley lattice: D-finite GF (i.e., linear DE with pol coeffs)

 Tamari lattice ? 

 Greedy Tamari lattice ?
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What about ascent intervals?
m-Dyck paths: delete the final large peak UmDm  quadrant walks.→
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What about ascent intervals?
m-Dyck paths: delete the final large peak UmDm  quadrant walks.→
• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:
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What about ascent intervals?
m-Dyck paths: delete the final large peak UmDm  quadrant walks.→
• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

• Asymptotics (from random walk results)       [Denisov & Wachtel 15]



65

What about ascent intervals?
m-Dyck paths: delete the final large peak UmDm  quadrant walks.→
• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

• Asymptotics (from random walk results)       [Denisov & Wachtel 15]
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What about ascent intervals?
m-Dyck paths: delete the final large peak UmDm  quadrant walks.→
• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

• Asymptotics (from random walk results)       [Denisov & Wachtel 15]

where
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What about ascent intervals?
m-Dyck paths: delete the final large peak UmDm  quadrant walks.→
• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

• Asymptotics (from random walk results)       [Denisov & Wachtel 15]

where

and
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What about ascent intervals?

• Asymptotics (from random walk results)       [Denisov & Wachtel 15]

where

and

m-Dyck paths: delete the final large peak UmDm  quadrant walks.→
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What about ascent intervals?

• Asymptotics (from random walk results)       [Denisov & Wachtel 15]

where

and

m-Dyck paths: delete the final large peak UmDm  quadrant walks.→
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What about ascent intervals?

• Asymptotics (from random walk results)       [Denisov & Wachtel 15]

where

and

For m>1, the exponent 𝛼 is irrational, and hence 
the GF of intervals cannot be D-finite. 

[Bostan, Raschel, Salvy 14]

m-Dyck paths: delete the final large peak UmDm  quadrant walks.→
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What about ascent intervals?
Mirrored m-Dyck paths: delete the first large peak UmDm  quadrant →
walks.
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What about ascent intervals?
Mirrored m-Dyck paths: delete the first large peak UmDm  quadrant →
walks.
• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:
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What about ascent intervals?
Mirrored m-Dyck paths: delete the first large peak UmDm  quadrant →
walks.
• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

• Asymptotics (from random walk results)       [Denisov & Wachtel 15]
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What about ascent intervals?
Mirrored m-Dyck paths: delete the first large peak UmDm  quadrant →
walks.
• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

• Asymptotics (from random walk results)       [Denisov & Wachtel 15]

where

and
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What about ascent intervals?
Mirrored m-Dyck paths: delete the first large peak UmDm  quadrant →
walks.

• Asymptotics (from random walk results)       [Denisov & Wachtel 15]

where

and

For m>1, the exponent 𝛼 is irrational, and hence 
the GF of intervals cannot be D-finite. 

[Bostan, Raschel, Salvy 14]



V. Connection with the 
sylvester congruence

[Hivert, Novelli, Thibon 05]
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In the OEIS...
Observation: for m=1, 2, …, 5, the sequence gm(n) that counts 
intervals of mirrored m-Dyck paths appears in the OEIS.
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In the OEIS...
Observation: for m=1, 2, …, 5, the sequence gm(n) that counts 
intervals of mirrored m-Dyck paths appears in the OEIS.
• m=1: number of sylvester classes of 1-multiparking functions 
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In the OEIS...
Observation: for m=1, 2, …, 5, the sequence gm(n) that counts 
intervals of mirrored m-Dyck paths appears in the OEIS.
• m=1: number of sylvester classes of 1-multiparking functions 
• m=2: number of sylvester classes of 2-multiparking functions
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In the OEIS...
Observation: for m=1, 2, …, 5, the sequence gm(n) that counts 
intervals of mirrored m-Dyck paths appears in the OEIS.
• m=1: number of sylvester classes of 1-multiparking functions 
• m=2: number of sylvester classes of 2-multiparking functions

and so on.
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In the OEIS...
Observation: for m=1, 2, …, 5, the sequence gm(n) that counts 
intervals of mirrored m-Dyck paths appears in the OEIS.
• m=1: number of sylvester classes of 1-multiparking functions 
• m=2: number of sylvester classes of 2-multiparking functions

and so on.
Link with the NT-lattice
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The sylvester congruence

• Defined on words on the alphabet ℤ
• Generated by commutation relations:

• Class representatives: words avoiding aba and acb (as subwords),
called sylvester words.
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The sylvester congruence

• Defined on words on the alphabet ℤ
• Generated by commutation relations:

• Class representatives: words avoiding aba and acb (as subwords),
called sylvester words.

Example:
 2 4 3 5 3  → 2 4 5 3 3
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The sylvester congruence

• Defined on words on the alphabet ℤ
• Generated by commutation relations:

• Class representatives: words avoiding aba and acb (as subwords),
called sylvester words.

Example:
 2 4 3 5 3  → 2 4 5 3 3
                      2 4 5 3 3  → 4 2 5 3 3 
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The sylvester congruence

• Defined on words on the alphabet ℤ
• Generated by commutation relations:

• Class representatives: words avoiding aba and acb (as subwords),
called sylvester words.

Example:
 2 4 3 5 3  → 2 4 5 3 3
                      2 4 5 3 3  → 4 2 5 3 3 
                                           4 2 5 3 3  → 4 5 2 3 3,  sylvester word 
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The Nadeau-Tewari lattice                     [2024]

Def. Let u=(u1, …, un) and v=(v1, … , vn) be two nonincreasing 
sequences of integers. Then u ≤ v for the NT order if
● u lies below v (ui  ≤ vi)
● every descent of v is a descent of u.

2

4

5

6

3

7

8

9

10

u / v
v = (10, 10, 10, 10, 9, 4)

u = (10, 10, 8, 8, 7, 3)
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From sylvester words to Nadeau-Tewari intervals
Example. Fix n=6 and a sylvester word w on the alphabet {1, 2, …, n}, 
containing the letter 1, say w = 3 2 2 2 2 5 1 1 1 5.
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From sylvester words to Nadeau-Tewari intervals
Example. Fix n=6 and a sylvester word w on the alphabet {1, 2, …, n}, 
containing the letter 1, say w = 3 2 2 2 2 5 1 1 1 5.
Let w1 = NInc(w) = 5 5 3 2 2 2 2 1 1 1  be its nonincreasing reordering.
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From sylvester words to Nadeau-Tewari intervals
Example. Fix n=6 and a sylvester word w on the alphabet {1, 2, …, n}, 
containing the letter 1, say w = 3 2 2 2 2 5 1 1 1 5.
Let w1 = NInc(w) = 5 5 3 2 2 2 2 1 1 1  be its nonincreasing reordering.
Let w2 = LRMin(w) = 3 2 2 2 2 2 1 1 1 1  be the largest nonincreasing 
word that is smaller than w, componentwise.
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From sylvester words to Nadeau-Tewari intervals
Example. Fix n=6 and a sylvester word w on the alphabet {1, 2, …, n}, 
containing the letter 1, say w = 3 2 2 2 2 5 1 1 1 5.
Let w1 = NInc(w) = 5 5 3 2 2 2 2 1 1 1  be its nonincreasing reordering.
Let w2 = LRMin(w) = 3 2 2 2 2 2 1 1 1 1  be the largest nonincreasing 
word that is smaller than w, componentwise.

• Write w1 and w2 vertically as follows:

0123456
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From sylvester words to Nadeau-Tewari intervals
Example. Fix n=6 and a sylvester word w on the alphabet {1, 2, …, n}, 
containing the letter 1, say w = 3 2 2 2 2 5 1 1 1 5.
Let w1 = NInc(w) = 5 5 3 2 2 2 2 1 1 1  be its nonincreasing reordering.
Let w2 = LRMin(w) = 3 2 2 2 2 2 1 1 1 1  be the largest nonincreasing 
word that is smaller than w, componentwise.

• Write w1 and w2 vertically as follows:

• Complete with n=6 horizontal steps to 
form two ES paths.

0123456
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From sylvester words to Nadeau-Tewari intervals
Example. Fix n=6 and a sylvester word w on the alphabet {1, 2, …, n}, 
containing the letter 1, say w = 3 2 2 2 2 5 1 1 1 5.
Let w1 = NInc(w) = 5 5 3 2 2 2 2 1 1 1  be its nonincreasing reordering.
Let w2 = LRMin(w) = 3 2 2 2 2 2 1 1 1 1  be the largest nonincreasing 
word that is smaller than w, componentwise.

• Write w1 and w2 vertically as follows:

• Complete with n=6 horizontal steps to 
form two ES paths.

• The horizontal words u = 10 10 8 8 7 3 
and v = 10 10 10 10 9 4, of length n=6, form 
an interval in the Nadeau-Tewari lattice.

012345
0
1
2

4
5
6

3

6

7
8
9

10
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From sylvester words to Nadeau-Tewari intervals
Proposition.  For any n, this construction gives a bijection between: 

 sylvester words w on the alphabet {1, 2, …, n} containing the 
letter 1, and 

 intervals [u,v] in the NT lattice, such that u and v have length n, 
positive entries and the same first letter.

012345
0
1
2

4
5
6

3

6

7
8
9

10

Example
For n=6 and w = 3 2 2 2 2 5 1 1 1 5, we 
have u= 10 10 8 8 7 3 and  v= 10 10 10 10 9 4.
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From sylvester words to Nadeau-Tewari intervals
Proposition.  For any n, this construction gives a bijection between: 

 sylvester words w on the alphabet {1, 2, …, n} containing the 
letter 1, and 

 intervals [u,v] in the NT lattice, such that u and v have length n, 
positive entries and the same first letter.

012345
0
1
2

4
5
6

3

6

7
8
9

10

Example
For n=6 and w = 3 2 2 2 2 5 1 1 1 5, we 
have u= 10 10 8 8 7 3 and  v= 10 10 10 10 9 4.

Conversely?
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From sylvester words to Nadeau-Tewari intervals

012345
0
1
2

4
5
6

3

6

7
8
9

10

Conversely?
 Starting from u = 10 10 8 8 7 3 and v = 10 10 10 10 9 4, recover the 
vertical words w1 = 5 5 3 2 2 2 2 1 1 1  and w2 = 3 2 2 2 2 2 1 1 1 1 : 
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From sylvester words to Nadeau-Tewari intervals

012345
0
1
2

4
5
6

3
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Conversely?
 Starting from u = 10 10 8 8 7 3 and v = 10 10 10 10 9 4, recover the 
vertical words w1 = 5 5 3 2 2 2 2 1 1 1  and w2 = 3 2 2 2 2 2 1 1 1 1 : 

same length (10), 
contain 1, 
w2 is less than w1 (componentwise)
alph(w2) ⊂ alph(w1).
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From sylvester words to Nadeau-Tewari intervals

012345
0
1
2

4
5
6

3
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10

Conversely?
 Starting from u = 10 10 8 8 7 3 and v = 10 10 10 10 9 4, recover the 
vertical words w1 = 5 5 3 2 2 2 2 1 1 1  and w2 = 3 2 2 2 2 2 1 1 1 1 : 

same length (10), 
contain 1, 
w2 is less than w1 (componentwise)
alph(w2) ⊂ alph(w1).

 Recover w from w1 = NInc(w)
and w2 = LRMin(w) ?

 avoids aba and acb

w = _  _  _  _  _  _  _  _  _  _ 
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From sylvester words to Nadeau-Tewari intervals
Conversely?
 Starting from u = 10 10 8 8 7 3 and v = 10 10 10 10 9 4, recover the 
vertical words w1 = 5 5 3 2 2 2 2 1 1 1  and w2 = 3 2 2 2 2 2 1 1 1 1 : 

same length (10), 
contain 1, 
w2 is less than w1 (componentwise)
alph(w2) ⊂ alph(w1).

 Recover w from w1 = NInc(w)
and w2 = LRMin(w) ?

lett(w)={5 5 3 2 2 2 2 1 1 1}

 avoids aba and acb

w = _  _  _  _  _  _  _  _  _  _ 
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From sylvester words to Nadeau-Tewari intervals
Conversely?
 Starting from u = 10 10 8 8 7 3 and v = 10 10 10 10 9 4, recover the 
vertical words w1 = 5 5 3 2 2 2 2 1 1 1  and w2 = 3 2 2 2 2 2 1 1 1 1 : 

same length (10), 
contain 1, 
w2 is less than w1 (componentwise)
alph(w2) ⊂ alph(w1).

 Recover w from w1 = NInc(w)
and w2 = LRMin(w) ?

lett(w)={5 5 3 2 2 2 2 1 1 1}

w = 3 2 _  _  _  _  1  _  _  _ 

 avoids aba and acb
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From sylvester words to Nadeau-Tewari intervals
Conversely?
 Starting from u = 10 10 8 8 7 3 and v = 10 10 10 10 9 4, recover the 
vertical words w1 = 5 5 3 2 2 2 2 1 1 1  and w2 = 3 2 2 2 2 2 1 1 1 1 : 

same length (10), 
contain 1, 
w2 is less than w1 (componentwise)
alph(w2) ⊂ alph(w1).

 Recover w from w1 = NInc(w)
and w2 = LRMin(w) ?

w = 3 2 _  _  _  _  1  _  _  _ 

 avoids aba and acb

lett(w)={5 5 3 2 2 2 2 1 1 1}



101

From sylvester words to Nadeau-Tewari intervals
Conversely?
 Starting from u = 10 10 8 8 7 3 and v = 10 10 10 10 9 4, recover the 
vertical words w1 = 5 5 3 2 2 2 2 1 1 1  and w2 = 3 2 2 2 2 2 1 1 1 1 : 

same length (10), 
contain 1, 
w2 is less than w1 (componentwise)
alph(w2) ⊂ alph(w1).

 Recover w from w1 = NInc(w)
and w2 = LRMin(w) ?

w = 3 2 _  _  _  _  1  _  _  _ 

 avoids aba and acb

lett(w)={5 5 3 2 2 2 2 1 1 1}

non-dec.
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From sylvester words to Nadeau-Tewari intervals
Conversely?
 Starting from u = 10 10 8 8 7 3 and v = 10 10 10 10 9 4, recover the 
vertical words w1 = 5 5 3 2 2 2 2 1 1 1  and w2 = 3 2 2 2 2 2 1 1 1 1 : 

same length (10), 
contain 1, 
w2 is less than w1 (componentwise)
alph(w2) ⊂ alph(w1).

 Recover w from w1 = NInc(w)
and w2 = LRMin(w) ?

 avoids aba and acb

w = 3 2 2 2 2 5 1  _  _  _ 

lett(w)={5 5 3 2 2 2 2 1 1 1}

non-dec.
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From sylvester words to Nadeau-Tewari intervals
Conversely?
 Starting from u = 10 10 8 8 7 3 and v = 10 10 10 10 9 4, recover the 
vertical words w1 = 5 5 3 2 2 2 2 1 1 1  and w2 = 3 2 2 2 2 2 1 1 1 1 : 

same length (10), 
contain 1, 
w2 is less than w1 (componentwise)
alph(w2) ⊂ alph(w1).

 Recover w from w1 = NInc(w)
and w2 = LRMin(w) ?

lett(w)={5 5 3 2 2 2 2 1 1 1}

 avoids aba and acb

w = 3 2 2 2 2 5 1  _  _  _ 
non-dec.
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From sylvester words to Nadeau-Tewari intervals
Conversely?
 Starting from u = 10 10 8 8 7 3 and v = 10 10 10 10 9 4, recover the 
vertical words w1 = 5 5 3 2 2 2 2 1 1 1  and w2 = 3 2 2 2 2 2 1 1 1 1 : 

same length (10), 
contain 1, 
w2 is less than w1 (componentwise)
alph(w2) ⊂ alph(w1).

 Recover w from w1 = NInc(w)
and w2 = LRMin(w) ?

lett(w)={5 5 3 2 2 2 2 1 1 1}

 avoids aba and acb

w = 3 2 2 2 2 5 1  1  1  5  
non-dec.
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From sylvester words to Nadeau-Tewari intervals
Proposition.  For any n, this construction gives a bijection between: 

 sylvester words w on the alphabet {1, 2, …, n} containing the 
letter 1, and 

 intervals [u,v] in the NT lattice, such that u and v have length n, 
positive entries and the same first letter.
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From sylvester words to Nadeau-Tewari intervals
Proposition.  For any n, this construction gives a bijection between: 

 sylvester words w on the alphabet {1, 2, …, n} containing the 
letter 1, and 

 intervals [u,v] in the NT lattice, such that u and v have length n, 
positive entries and the same first letter.

Specializations: bijections between
 positive sylvester words w of length mn such that 

NInc(w) ≤ nm (n-1)m … 2m 1m and ascent intervals of m-Dyck paths 
of length mn

 positive sylvester words w of length n such that 
NInc(w) ≤ ((n-1)m+1) … (2m+1) (m+1) 1 and ascent intervals of 
mirrored m-Dyck paths of length mn. 



VI. Final remarks
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Final remarks
• Combinatorial proof for the number/GF of ascent intervals? (m=1)
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Final remarks
• Combinatorial proof for the number/GF of ascent intervals? (m=1)

• A symmetric joint distribution on ascent intervals [P,Q] (m=1): 
a(P) = length of the first ascent of P
r(P,Q) = number of ascents of P before the first descent of Q

Example. a(P)=1,  r(P,Q)=2
(Non-recursive) bijection?
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Final remarks
• Combinatorial proof for the number/GF of ascent intervals? (m=1)

• A symmetric joint distribution on ascent intervals [P,Q] (m=1): 
a(P) = length of the first ascent of P
r(P,Q) = number of ascents of P before the first descent of Q

Example. a(P)=1,  r(P,Q)=2
(Non-recursive) bijection?

• Study mirrored m-Dyck paths in other Dyck lattices: intervals?
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Final remarks
• Combinatorial proof for the number/GF of ascent intervals? (m=1)

• A symmetric joint distribution on ascent intervals [P,Q] (m=1): 
a(P) = length of the first ascent of P
r(P,Q) = number of ascents of P before the first descent of Q

Example. a(P)=1,  r(P,Q)=2
(Non-recursive) bijection?

• Study mirrored m-Dyck paths in other Dyck lattices: intervals?
• Poset properties? (shellability, geometric realizations...)
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Final remarks
• Combinatorial proof for the number/GF of ascent intervals? (m=1)

• A symmetric joint distribution on ascent intervals [P,Q] (m=1): 
a(P) = length of the first ascent of P
r(P,Q) = number of ascents of P before the first descent of Q

Example. a(P)=1,  r(P,Q)=2
(Non-recursive) bijection?

• Study mirrored m-Dyck paths in other Dyck lattices: intervals?
• Poset properties? (shellability, geometric realizations...)

Thanks for your attention
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m-Dyck paths and mirrored m-Dyck paths

m=2
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m-Dyck paths and mirrored m-Dyck paths

m=2


