Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin, LaBRI, Université de Bordeaux

12 décembre 2022

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur $\mathbb{Z}/n\mathbb{Z}$

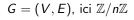
Sur

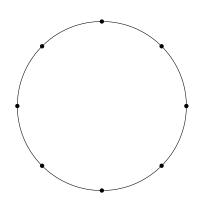
Définition

Loi de TL

Conclusio

Références





Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur

Zoé Varin

Introduction

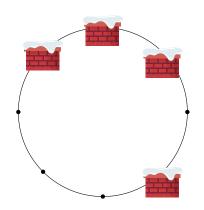
Introduction

Loide T's Z/nZ

Sur \mathbb{Z}

Définition Loi de T^L

001101010



 N_{t} trous :

$$extbf{ au}^{ ext{init}} = \left\{ egin{array}{c} oldsymbol{\omega} \end{array}
ight\}$$

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur

Zoé Varin

Introduction

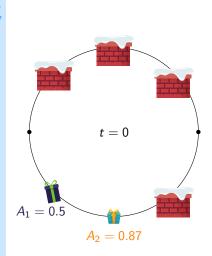
Loi de T^L sur

Définition

Loi de T^L

Conclusio

Référence



 N_t trous :

$$extcolor{T}^{ extit{init}} = \left\{ egin{array}{c} oldsymbol{\omega} \end{array}
ight\}$$

 N_b balles:

$$oldsymbol{\mathcal{B}}^{init} = \left\{ egin{array}{c} oldsymbol{i} & oldsymbol{i} & \end{array}, & oldsymbol{i} \end{array}
ight.$$

une horloge par balle :

$$oldsymbol{A}_{
u} \sim \mathcal{U}\left([0,1]
ight)$$

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur

Zoé Varin

Introduction

meroduceior

Loi de T^L sur

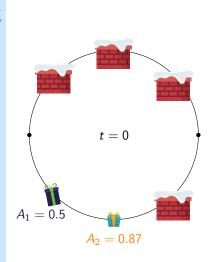
Sur

Définition

Loi de T^L

001101010

Références



 N_t trous :

$$T^{init} = \left\{ egin{array}{c} oldsymbol{i} \end{array}
ight\}$$

 $N_{\rm b}$ balles :

$$\mathbf{B}^{init} = \left\{ \begin{array}{c} \mathbf{M} \end{array}, \begin{array}{c} \mathbf{M} \end{array}, \ldots \right\}$$

une horloge par balle :

$$\textbf{\textit{A}}_{\nu} \sim \mathcal{U}\left([0,1]\right)$$

$$(\boldsymbol{\textit{B}}^{\textit{init}}, \boldsymbol{\textit{T}}^{\textit{init}}) \sim \mathcal{U}\left(\begin{pmatrix} \mathbb{Z}/n\mathbb{Z} \\ N_b, N_t \end{pmatrix} \right)$$

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

,

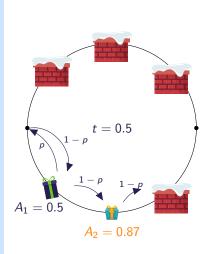
Loi de T^L sur

Sur

Définition Loi de T^L

Conclusio

Référence



 N_t trous :

$$T^{init} = \left\{ egin{array}{c} oldsymbol{i} \end{array}
ight\}$$

 N_{b} balles :

$$\mathbf{B}^{init} = \left\{ \begin{array}{c} \mathbf{M} \end{array}, \begin{array}{c} \mathbf{M} \end{array}, \ldots \right\}$$

une horloge par balle :

$$\textbf{\textit{A}}_{\nu} \sim \mathcal{U}\left([0,1]\right)$$

$$(\boldsymbol{\textit{B}}^{\textit{init}}, \boldsymbol{\textit{T}}^{\textit{init}}) \sim \mathcal{U}\left(\begin{pmatrix} \mathbb{Z}/n\mathbb{Z} \\ N_b, N_t \end{pmatrix} \right)$$

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

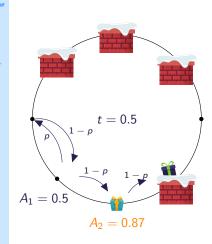
Introduction

.....

Loi de T^L sur

Sur

Définition Loi de T^L



 N_t trous:

$$T^{init} = \left\{ egin{array}{c} oldsymbol{i} \end{array}
ight\}$$

 N_{b} balles :

$$\mathbf{B}^{init} = \left\{ \begin{array}{c} \mathbf{M} \end{array}, \begin{array}{c} \mathbf{M} \end{array}, \ldots \right\}$$

une horloge par balle :

$$\textbf{\textit{A}}_{\nu} \sim \mathcal{U}\left([0,1]\right)$$

$$(\boldsymbol{\textit{B}}^{\textit{init}}, \boldsymbol{\textit{T}}^{\textit{init}}) \sim \mathcal{U}\left(\begin{pmatrix} \mathbb{Z}/n\mathbb{Z} \\ N_b, N_t \end{pmatrix} \right)$$

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur

Zoé Varin

Introduction

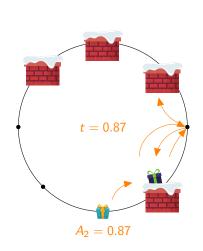
Loi de T^L sur

Définition

Loi de T^L

Conclusio

Référence



 N_t trous :

$$ag{T}^{init} = \left\{ egin{array}{c} oldsymbol{\omega} \end{array}
ight\}$$

 $N_{\rm b}$ balles :

$$\mathbf{B}^{init} = \left\{ \begin{array}{c} \mathbf{M} \end{array}, \begin{array}{c} \mathbf{M} \end{array}, \ldots \right\}$$

une horloge par balle :

$$oldsymbol{A}_{
u} \sim \mathcal{U}\left([0,1]
ight)$$

$$(\boldsymbol{\textit{B}}^{\textit{init}}, \boldsymbol{\textit{T}}^{\textit{init}}) \sim \mathcal{U}\left(\begin{pmatrix} \mathbb{Z}/n\mathbb{Z} \\ N_b, N_t \end{pmatrix} \right)$$

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur

Zoé Varin

Introduction

Loi de T^L sur

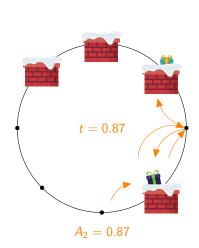
 $\mathbb{Z}/n\mathbb{Z}$

Sur

Définition Loi de T^L

Conclusio

Référence



 N_t trous :

$$T^{init} = \left\{ egin{array}{c} oldsymbol{i} \end{array}
ight\}$$

 N_{b} balles :

$$\mathbf{\mathcal{B}}^{init} = \left\{ \begin{array}{c} \mathbf{i} \mathbf{i} \end{array}, \begin{array}{c} \mathbf{i} \mathbf{i} \end{array}, \ldots \right\}$$

une horloge par balle :

$$\textbf{\textit{A}}_{\nu} \sim \mathcal{U}\left([0,1]\right)$$

$$(\textbf{\textit{B}}^{init}, \textbf{\textit{T}}^{init}) \sim \mathcal{U}\left(\begin{pmatrix} \mathbb{Z}/n\mathbb{Z} \\ N_b, N_t \end{pmatrix} \right)$$

où N_{t} et N_{b} fixés, $N_{t} \geq N_{b}$

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

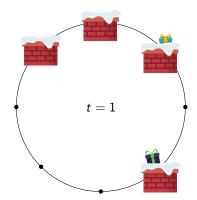
Introduction

Loi de T^L sur $\mathbb{Z}/n\mathbb{Z}$

Sur

Définition Loi de T^L

Références



Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

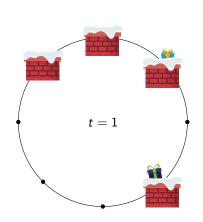
1

Sur

Définition Loi de T^L

. .

Références



Trous libres:

$$T^L = \Big\{ ext{positions des} \;\; egin{array}{c} ext{à} \;\; t=1 \Big\} \,\;$$

Trous occupés :

$$\mathcal{T}^{\mathcal{O}} = \left\{ egin{matrix} ext{positions des} & & & & \\ ext{\hat{a} $t=1$} & & & & \end{array}, \quad \overrightarrow{b} & , \cdots
ight\}$$

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

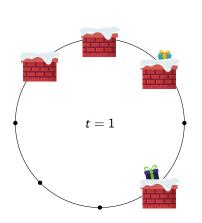
Loi de T^L sur

,

Sur

Définition Loi de T^L

Référence



Trous libres:

$$\mathcal{T}^{L} = \Big\{ ext{positions des} \;\; egin{array}{c} ext{à} \;\; t=1 \Big\} \,$$

Trous occupés :

$$\mathcal{T}^{\mathcal{O}} = \left\{ egin{matrix} ext{positions des} & & & & \\ ext{\hat{a} $t=1$} & & & & \end{array}, \quad \overrightarrow{b} & , \cdots
ight\}$$

Proposition

La variable aléatoire T^L est bien définie.

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

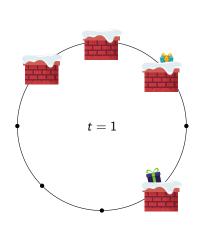
1

Sur

Définition Loi de T^L

. . .

Référence



Trous libres:

$${m T}^{m L} = \Big\{ ext{positions des} \;\; m{ ilde{a}} \;\; \dot{a} \;\; t = 1 \Big\}$$

Trous occupés :

Proposition

La variable aléatoire T^L est bien définie.

Questions

Quelle est la loi de T^L ? Et que se passe-t-il si $G = \mathbb{Z}$?

Un peu de contexte : des systèmes de particules

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

meroductio

Loi de T^L sur

c....

Sur Z Définition

Loi de T^L

Conclusion

premier modèle : Diaconis et Fulton [DF91]

Un peu de contexte : des systèmes de particules

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de TL sur

.

Sur

Loi de T^L

Conclusion

premier modèle : Diaconis et Fulton [DF91]

- internal diffusion-limited aggregation (IDLA) (Lawler, Bramson, Griffeath [LBG92])
- Activated Random Walk (ARW); Diffusion-Limited Annihilating Systems (Cabezas, Rolla, Sidoravicius)

Un peu de contexte : des systèmes de particules

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

meroducero

Loi de TL sur

Sur

Loi de T^L

Conclusio

Référence

- premier modèle : Diaconis et Fulton [DF91]
- internal diffusion-limited aggregation (IDLA) (Lawler, Bramson, Griffeath [LBG92])
- Activated Random Walk (ARW); Diffusion-Limited Annihilating Systems (Cabezas, Rolla, Sidoravicius)
- processus de parking (Chassaing, Louchard, ...)
- interprétation probabiliste des Remixed Eulerian Numbers (Nadeau, Tewari [NT22])

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

Sur 7

Définition

Conclusion

Références

Proposition (Diaconis-Fulton [DF91])

Sur un graphe fini, si on fixe O_1 et O_2 deux ordres d'activations des balles, $T^L(O_1) \stackrel{\mathcal{L}}{=} T^L(O_2)$

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

Sur

Définition

Canalusia

Référence

Proposition (Diaconis-Fulton [DF91])

Sur un graphe fini, si on fixe O_1 et O_2 deux ordres d'activations des balles, $\mathcal{T}^L(O_1) \stackrel{\mathcal{L}}{=} \mathcal{T}^L(O_2)$

Preuve : changement de point de vue - les collections de piles

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

c....

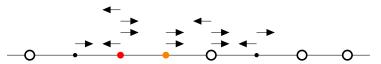
Définition

Canalusia

Proposition (Diaconis-Fulton [DF91])

Sur un graphe fini, si on fixe O_1 et O_2 deux ordres d'activations des balles, $\mathcal{T}^{\boldsymbol{L}}(O_1) \stackrel{\mathcal{L}}{=} \mathcal{T}^{\boldsymbol{L}}(O_2)$

Preuve : changement de point de vue - les collections de piles



Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

e....

Définition

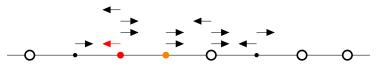
Canalusia

Référence

Proposition (Diaconis-Fulton [DF91])

Sur un graphe fini, si on fixe O_1 et O_2 deux ordres d'activations des balles, $\mathcal{T}^L(O_1) \stackrel{\mathcal{L}}{=} \mathcal{T}^L(O_2)$

Preuve : changement de point de vue - les collections de piles



Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

e....

Définition

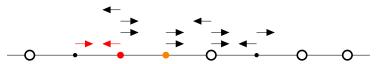
Conclusion

Référenc

Proposition (Diaconis-Fulton [DF91])

Sur un graphe fini, si on fixe O_1 et O_2 deux ordres d'activations des balles, $\mathcal{T}^L(O_1) \stackrel{\mathcal{L}}{=} \mathcal{T}^L(O_2)$

Preuve : changement de point de vue - les collections de piles



Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

Sur

Définition

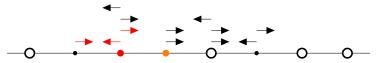
Conclusion

Référence

Proposition (Diaconis-Fulton [DF91])

Sur un graphe fini, si on fixe O_1 et O_2 deux ordres d'activations des balles, $\mathcal{T}^{\boldsymbol{L}}(O_1) \stackrel{\mathcal{L}}{=} \mathcal{T}^{\boldsymbol{L}}(O_2)$

Preuve : changement de point de vue - les collections de piles



Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

Sur

Définition

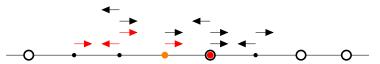
Conclusion

Référen

Proposition (Diaconis-Fulton [DF91])

Sur un graphe fini, si on fixe O_1 et O_2 deux ordres d'activations des balles, $\mathcal{T}^L(O_1) \stackrel{\mathcal{L}}{=} \mathcal{T}^L(O_2)$

Preuve : changement de point de vue - les collections de piles



Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

e....

Définition

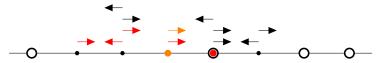
Conclusion

Référenc

Proposition (Diaconis-Fulton [DF91])

Sur un graphe fini, si on fixe O_1 et O_2 deux ordres d'activations des balles, $\mathcal{T}^{\boldsymbol{L}}(O_1) \stackrel{\mathcal{L}}{=} \mathcal{T}^{\boldsymbol{L}}(O_2)$

Preuve : changement de point de vue - les collections de piles



Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

e....

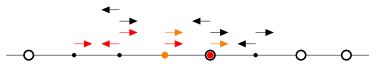
Définition

Conclusion

Proposition (Diaconis-Fulton [DF91])

Sur un graphe fini, si on fixe O_1 et O_2 deux ordres d'activations des balles, $\mathcal{T}^{\boldsymbol{L}}(O_1) \stackrel{\mathcal{L}}{=} \mathcal{T}^{\boldsymbol{L}}(O_2)$

Preuve : changement de point de vue - les collections de piles



Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

Sur

Définition

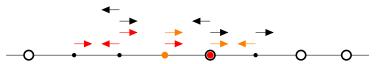
Conclusion

Référenc

Proposition (Diaconis-Fulton [DF91])

Sur un graphe fini, si on fixe O_1 et O_2 deux ordres d'activations des balles, $\mathcal{T}^{\boldsymbol{L}}(O_1) \stackrel{\mathcal{L}}{=} \mathcal{T}^{\boldsymbol{L}}(O_2)$

Preuve : changement de point de vue - les collections de piles



Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

e....

Définition

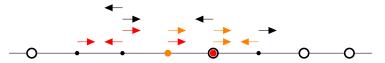
Conclusion

Référenc

Proposition (Diaconis-Fulton [DF91])

Sur un graphe fini, si on fixe O_1 et O_2 deux ordres d'activations des balles, $\mathcal{T}^{\boldsymbol{L}}(O_1) \stackrel{\mathcal{L}}{=} \mathcal{T}^{\boldsymbol{L}}(O_2)$

Preuve : changement de point de vue - les collections de piles



Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

e....

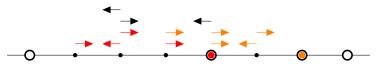
Définition

. . .

Proposition (Diaconis-Fulton [DF91])

Sur un graphe fini, si on fixe O_1 et O_2 deux ordres d'activations des balles, $\mathcal{T}^{\boldsymbol{L}}(O_1) \stackrel{\mathcal{L}}{=} \mathcal{T}^{\boldsymbol{L}}(O_2)$

Preuve : changement de point de vue - les collections de piles



Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de TL sur

c....

Définitio

Loi de T^L

Conclusion

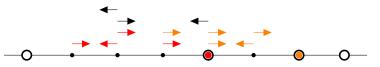
Référenc

Proposition (Diaconis-Fulton [DF91])

Sur un graphe fini, si on fixe O_1 et O_2 deux ordres d'activations des balles, $T^L(O_1) \stackrel{\mathcal{L}}{=} T^L(O_2)$

Preuve : changement de point de vue - les collections de piles

sur chaque sommet : une pile de flèches partagée par toutes les balles



• commutation : mêmes trous atteints, et même, mêmes flèches utilisées ! $T^L(O_1) = T^L(O_2)$ p.s.

clé: pour tout sommet u,

$$d_{out}(u) + \mathbb{1}_{u \in T^{init}} = d_{in}(u) + \mathbb{1}_{u \in B^{init}}$$

La loi de T^L

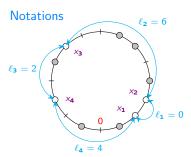
Un système de particules : le modèle de golf $\operatorname{sur} \mathbb{Z} / n \mathbb{Z}$ et sur

Zoé Varin

Loi de TL sur

 $\mathbb{Z}/n\mathbb{Z}$

Définition Loi de TL



$$X = \{x_1, \dots, x_{N_\ell}\}, \; N_\ell = N_t - N_b.$$

$$0 \le x_1 \le \ldots \le x_{N_\ell} < n$$

$$\forall i, \ell_i \coloneqq (x_{i+1} - x_i - 1) \bmod n$$

$$\mathbb{P}\left(\boldsymbol{T^L} = \boldsymbol{X}\right) = ?$$

La loi de T^L

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

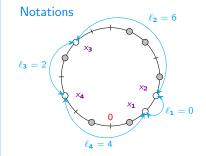
Introduction

Loi de T^L sur

Ţ,

Définition

Loi de T^L



$$X = \{x_1, \dots, x_{N_\ell}\}, \; N_\ell = N_t - N_b.$$

$$0 \le x_1 \le \ldots \le x_{N_\ell} < n$$

$$\forall i, \ell_i \coloneqq (x_{i+1} - x_i - 1) \bmod n$$

$$\mathbb{P}\left(\boldsymbol{T^{L}}=X\right)=?$$

Théorème (Loi des trous libres)

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{t}},p}\left(\boldsymbol{T^{L}}=\boldsymbol{X}\right)=\frac{1}{|C^{n,N_{\mathbf{b}},N_{\mathbf{t}}}|}\sum\prod_{i=1}^{N_{\ell}}\frac{1}{b_{i}+1}\binom{\ell_{i}}{b_{i},b_{i},\ell_{i}-2b_{i}}$$

où la somme porte sur les $(b_i)_{i\in N_\ell}$ tels que $\sum_{i\in N_\ell} b_i = N_b$, et $\forall i, 2b_i \leq \ell_i$.

Calcul de la loi de ${m T^L}$: cas particulier où ${m N_t} = {m N_b} + 1$

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

.

Loi de T^L sur $\mathbb{Z}/n\mathbb{Z}$

Sur

Définition

C---I---

Références

clé: invariance par rotation

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{b}}+1,p}\left(\boldsymbol{T}^{\boldsymbol{L}}=\{x\}\right)=\frac{1}{n}$$

Calcul de la loi de ${\it T^L}$: cas particulier où ${\it N_t} = {\it N_b} + 1$

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

. /

Loi de T^L sur $\mathbb{Z}/n\mathbb{Z}$

Sur

Définition

Conclusio

Références

clé : invariance par rotation

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{b}}+1,p}\left(\boldsymbol{T}^{\boldsymbol{L}}=\{x\}\right)=\frac{1}{n}$$

Lemme (Loi des trous libres - cas $N_t = N_b + 1$)

Pour tout $x \in \mathbb{Z}/n\mathbb{Z}$,

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{b}}+1,p}\left(\boldsymbol{T}^{\boldsymbol{L}}=\{x\}\big|x\in\boldsymbol{T}^{init}\right)=\frac{1}{N_{\mathbf{b}}}=\frac{1}{N_{\mathbf{b}}+1}$$

Calcul de la loi de T^L

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur $\mathbb{Z}/n\mathbb{Z}$

C.... 7

Définition Loi de T^L

Conclusio

Références

Supposons que $n = N_t + N_b$. On pose alors $b_i := \ell_i/2$.

Preuve du théorème

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{t}},\rho}\left(\boldsymbol{\mathit{T^{L}}}=\left\{x_{i}\right\}\right)=$$

Calcul de la loi de T^L

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

 $\mathbb{Z}/n\mathbb{Z}$

Sur

Définition

Loi de T^L

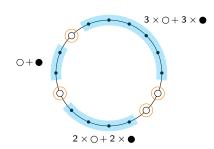
Conclusio

Références

Supposons que $n = N_t + N_b$. On pose alors $b_i := \ell_i/2$.

Preuve du théorème

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{t}},p}\left(oldsymbol{T^L}=\left\{x_i
ight\}
ight)=$$



Calcul de la loi de T^L

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

.....

Loi de T^L sur $\mathbb{Z}/n\mathbb{Z}$

Sur 7

Définition

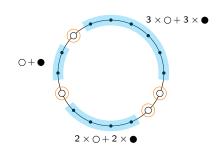
Loi de T^L

Diff....

Supposons que $n = N_t + N_b$. On pose alors $b_i := \ell_i/2$.

Preuve du théorème

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{t}},p}\left(\boldsymbol{T^L} = \{x_i\}\right) = \mathbb{P}\left(\boldsymbol{T^L} = \{x_i\} \middle| \begin{array}{l} X \subseteq \boldsymbol{T}^{init} \\ \text{et } |B_i| = b_i \end{array}\right) \mathbb{P}\left(\begin{array}{c} X \subseteq \boldsymbol{T}^{init} \\ \text{et } |B_i| = b_i \end{array}\right)$$



Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Introduction

Loi de T^L sur $\mathbb{Z}/n\mathbb{Z}$

Sur

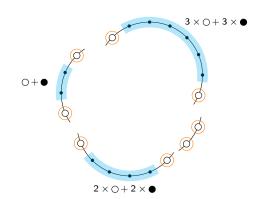
Définition Loi de T^L

201 00 7

Conclusio

Supposons que
$$n = N_t + N_b$$
. On pose alors $b_i := \ell_i/2$.

$$\mathbb{P}^{n,N_{b},N_{t},p}\left(\boldsymbol{\mathit{T^{L}}} = \{x_{i}\}\right) = \mathbb{P}\left(\boldsymbol{\mathit{T^{L}}} = \{x_{i}\} \middle| \begin{array}{l} X \subseteq \boldsymbol{\mathit{T}}^{init} \\ \text{et } |B_{i}| = b_{i} \end{array}\right) \mathbb{P}\left(\begin{array}{l} X \subseteq \boldsymbol{\mathit{T}}^{init} \\ \text{et } |B_{i}| = b_{i} \end{array}\right)$$



Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

.

Loi de T^L sur $\mathbb{Z}/n\mathbb{Z}$

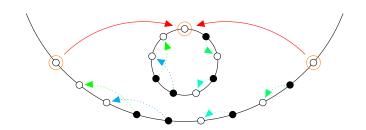
Sur

Définition Loi de T^L

. . .

Supposons que $n = N_t + N_b$. On pose alors $b_i := \ell_i/2$.

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{t}},p}\left(\boldsymbol{\mathcal{T}^{L}}=\left\{\boldsymbol{x}_{i}\right\}\right)=\mathbb{P}\left(\boldsymbol{\mathcal{T}^{L}}=\left\{\boldsymbol{x}_{i}\right\}\middle|\begin{array}{c}\boldsymbol{X}\subseteq\boldsymbol{\mathcal{T}}^{init}\\\text{et }|\boldsymbol{B}_{i}|=b_{i}\end{array}\right)\mathbb{P}\left(\begin{array}{c}\boldsymbol{X}\subseteq\boldsymbol{\mathcal{T}}^{init}\\\text{et }|\boldsymbol{B}_{i}|=b_{i}\end{array}\right)$$



Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

meroduction

Loi de T^L sur

Sur

Définition Loi de T^L

Loi de

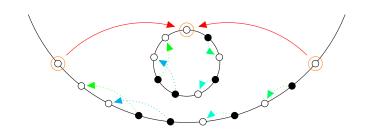
0011010010

Référence

Supposons que $n = N_t + N_b$. On pose alors $b_i := \ell_i/2$.

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{t}},p}\left(\boldsymbol{T^{L}} = \{x_{i}\}\right) = \mathbb{P}\left(\boldsymbol{T^{L}} = \{x_{i}\} \middle| \begin{array}{l} X \subseteq \boldsymbol{T}^{init} \\ \text{et } |\boldsymbol{B}_{i}| = b_{i} \end{array}\right) \mathbb{P}\left(\begin{array}{l} X \subseteq \boldsymbol{T}^{init} \\ \text{et } |\boldsymbol{B}_{i}| = b_{i} \end{array}\right)$$

$$= \left(\prod_{i=1}^{N_{\ell}} \frac{1}{b_{i} + 1}\right)$$



Un système de particules : le modèle de golf $\operatorname{sur} \mathbb{Z} / n \mathbb{Z}$ et sur

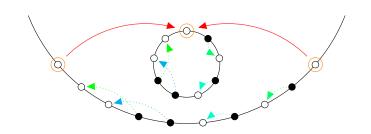
Zoé Varin

Loi de TL sur

Définition Loi de TL

Supposons que $n = N_t + N_b$. On pose alors $b_i := \ell_i/2$.

$$\begin{split} \mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{t}},p}\left(\boldsymbol{T^{L}} = \left\{x_{i}\right\}\right) &= \mathbb{P}\left(\boldsymbol{T^{L}} = \left\{x_{i}\right\} \middle| \begin{array}{l} X \subseteq \boldsymbol{T}^{init} \\ \text{et } |\boldsymbol{B}_{i}| = b_{i} \end{array}\right) \mathbb{P}\left(\begin{array}{l} X \subseteq \boldsymbol{T}^{init} \\ \text{et } |\boldsymbol{B}_{i}| = b_{i} \end{array}\right) \\ &= \left(\prod_{i=1}^{N_{\ell}} \frac{1}{b_{i}+1}\right) \frac{\prod_{i=1}^{N_{\ell}} \binom{2b_{i}}{b_{i}}}{\binom{n}{N_{\star}}} \end{split}$$



Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

meroduction

Loi de T^L sur $\mathbb{Z}/n\mathbb{Z}$

Sur

Définition Loi de T^L

Canalusia

Dáfávansa

Supposons que $n = N_t + N_b$. On pose alors $b_i := \ell_i/2$.

Preuve du théorème

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{t}},p}\left(\boldsymbol{T^{L}} = \{\mathbf{x}_{i}\}\right) = \mathbb{P}\left(\boldsymbol{T^{L}} = \{\mathbf{x}_{i}\}\middle| \begin{array}{l} \mathbf{X} \subseteq \boldsymbol{T}^{init} \\ \text{et } |\boldsymbol{B}_{i}| = b_{i} \end{array}\right) \mathbb{P}\left(\begin{array}{l} \mathbf{X} \subseteq \boldsymbol{T}^{init} \\ \text{et } |\boldsymbol{B}_{i}| = b_{i} \end{array}\right)$$

$$= \left(\prod_{i=1}^{N_{\ell}} \frac{1}{b_{i}+1}\right) \frac{\prod_{i=1}^{N_{\ell}} \binom{2b_{i}}{b_{i}}}{\binom{n}{N_{\mathbf{t}}}}$$

Théorème (Loi des trous libres)

$$\mathbb{P}^{n,N_{\mathbf{b}},N_{\mathbf{t},p}}\left(\boldsymbol{\mathcal{T}^{L}}=\boldsymbol{\mathcal{X}}\right)=\frac{1}{|C^{n,N_{\mathbf{b}},N_{\mathbf{t}}}|}\sum\prod_{i=1}^{N_{\ell}}\frac{1}{b_{i}+1}\binom{\ell_{i}}{b_{i},b_{i},\ell_{i}-2b_{i}}$$

où la somme porte sur les $(b_i)_{i \in N_\ell}$ tels que $\sum_{i \in N_\ell} b_i = N_b$, et $\forall i, 2b_i \le \ell_i$.

Définition du modèle sur \mathbb{Z}

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

22 / H2

Sur

Définition

Loi de /

Conclusio

Référence

Modèle naturel

pour chaque sommet u, indépendamment :

- lacktriangle état : balle avec proba $d_{
 m b}$ OU trou avec proba $d_{
 m t}$, $0 < d_{
 m b} < d_{
 m t}$
- lacksquare horloge : $oldsymbol{A}_{u}\sim\mathcal{U}\left(\left[0,1
 ight]
 ight)$

Question

Le modèle est-il bien défini?

Définition du modèle sur Z

Un système de particules : le modèle de golf $\operatorname{sur} \mathbb{Z} / n \mathbb{Z}$ et sur

Zoé Varin

Loi de TL sur

Définition

Loi de TL

Modèle naturel

pour chaque sommet u, indépendamment :

- ullet état : balle avec proba $d_{\rm b}$ OU trou avec proba $d_{\rm t}$, $0 < d_{\rm b} < d_{\rm t}$
- horloge : $\mathbf{A}_{\mu} \sim \mathcal{U}([0,1])$

Le modèle est-il bien défini?

La difficulté

- une infinité de balles
- **p** pour tout u, une infinité de v tels que $\mathbf{A}_{v} < \mathbf{A}_{u}$

Chaque balle trouve-t-elle un trou?

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

e....

Définition

Loi de T^L

Conclusio

Références

On définit $Z^{l,r}$ la configuration dans laquelle on a activé toutes les balles dans l'intervalle [-l, r].

Proposition

Pour tout v, $\mathbf{Z}^{k,k}(v)$ est presque sûrement constant à partir d'un certain k. $Z := (\lim_k \mathbf{Z}^{k,k}(v))_{v \in V}$ est une configuration finale.

Deux points clés :

 La propriété de commutation permet d'agrandir l'intervalle progressivement

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

Sur 2

Définition

 $\mathbf{Loi}\ \mathsf{de}\ T^L$

Conclusio

Référence

On définit $Z^{l,r}$ la configuration dans laquelle on a activé toutes les balles dans l'intervalle [-l, r].

Proposition

Pour tout v, $\mathbf{Z}^{k,k}(v)$ est presque sûrement constant à partir d'un certain k. $Z := (\lim_k \mathbf{Z}^{k,k}(v))_{v \in V}$ est une configuration finale.

Deux points clés :

- La propriété de commutation permet d'agrandir l'intervalle progressivement
- chaque $Z^{k,k}(v)$ est modifié un nombre fini de fois p.s.

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur

Zoé Varin

Introduction

Loi de T^L s

Sur

Définition

 $\mathsf{Loi}\;\mathsf{de}\;T^L$

Conclusion

Référence

• chaque $Z^{k,k}(v)$ est modifié un nombre fini de fois p.s.

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

 $\mathbb{Z}/n\mathbb{Z}$

Sur

Définition

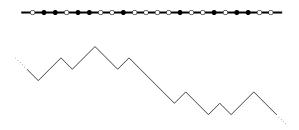
Loi de T^L

Conclusion

Références

• chaque $Z^{k,k}(v)$ est modifié un nombre fini de fois p.s.

Codage des états



Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur $\mathbb{Z}/n\mathbb{Z}$

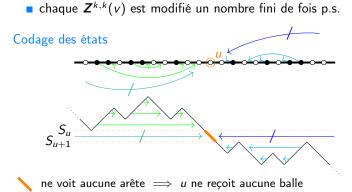
Sur

Définition

Loi de T^L

00110100

Références



Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

Sur

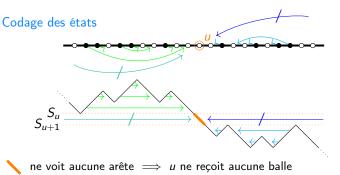
Définition

Loi de T

Conclusio

Références

• chaque $Z^{k,k}(v)$ est modifié un nombre fini de fois p.s.



Proposition

Il existe une infinité de \ \ p.s. (à droite et à gauche de tout sommet).

Si on définit $N = \#\{ \setminus \}$, alors pour tout n, $\mathbb{P}(N \ge n) = 1$.

La loi de T^L sur \mathbb{Z}

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

 $\mathbb{Z}/n\mathbb{Z}$

Sur

Loi de T^L

Loi de /

On note $(\Delta_i T^L)_{i \in \mathbb{Z}}$ le processus qui indexe les distances inter-trous libres.

Théorème

If existe $\mathcal{G}, \mathcal{H}, \lambda$ et $\left(\mathbf{L}_{i}^{(\lambda)}\right)_{i \in \mathbb{Z}}$ (explicites) tels que pour tout R > 0,

$$\mathbb{P}\left(\Delta_{i} \boldsymbol{\mathcal{T}^{L}} = 2b_{i}, -R \leq i \leq R\right) = \prod_{i=-R}^{R} \mathbb{P}\left(\boldsymbol{\mathcal{L}}_{i}^{(\lambda)} = 2b_{i}\right)$$

$$= \frac{(2b_{0} + 1)\lambda^{2b_{0}} C_{b_{0}}}{\mathcal{H}(\lambda)} \prod_{i=-R, i \neq 0}^{R} \frac{\lambda^{2b_{i}} C_{b_{i}}}{\mathcal{G}(\lambda)}$$

La loi de T^L sur \mathbb{Z}

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

.

Loi de TL sur

D/C III

Loi de T^L

Conclusio

Référence

On note $(\Delta_i T^L)_{i \in \mathbb{Z}}$ le processus qui indexe les distances inter-trous libres.

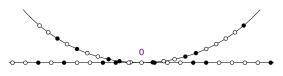
Théorème

Il existe $\mathcal{G}, \mathcal{H}, \lambda$ et $\left(\mathbf{L}_{i}^{(\lambda)}\right)_{i \in \mathbb{Z}}$ (explicites) tels que pour tout R > 0,

$$\mathbb{P}\left(\Delta_{i} \mathbf{T}^{\mathbf{L}} = 2b_{i}, -R \leq i \leq R\right) = \prod_{i=-R}^{R} \mathbb{P}\left(\mathbf{L}_{i}^{(\lambda)} = 2b_{i}\right)$$

$$=\frac{(2b_0+1)\lambda^{2b_0}\,\mathsf{C}_{b_0}}{\mathcal{H}(\lambda)}\prod_{i=-R,i\neq 0}^R\frac{\lambda^{2b_i}\,\mathsf{C}_{b_i}}{\mathcal{G}(\lambda)}$$

Clé de la preuve : couplage avec le cercle



$$\frac{N_{\mathbf{b}}(n)}{n} \to d_{\mathbf{b}}, \frac{N_{\mathbf{t}}(n)}{n} \to d_{\mathbf{t}}$$

environnement local similaire + suffisant

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

 $\mathbb{Z}/n\mathbb{Z}$

Sur 2

Loi de T^L

Conclusion

Référence

Soient R > 0, $\epsilon > 0$.

Sur \mathbb{Z} : l'environnement local autour de 0 est suffisant p.s. :

$$\exists M>0: \mathbb{P}^{\mathbb{Z},d_{\pmb{b}},d_{\pmb{t}},p}\left(\begin{array}{c}\text{il y a }R+2\text{ trous à gauche et à droite de 0}\\\text{dans l'intervalle }[-M,M]\end{array}\right)>1-\epsilon.$$

donc avec proba $\geq 1 - \epsilon$, les $(\Delta_i T^L)_{-R \leq i \leq R}$ ne dépendent que de la configuration initiale sur [-M, M].

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

Définition

Loi de T^L

Conclusion

Référence

Soient R > 0, $\epsilon > 0$.

■ Sur Z: l'environnement local autour de 0 est suffisant p.s. :

$$\exists M>0: \mathbb{P}^{\mathbb{Z},d_{\mathbf{b}},d_{\mathbf{t}},p}\left(\begin{array}{c}\text{il y a }R+2\text{ trous à gauche et à droite de 0}\\\text{dans l'intervalle }[-M,M]\end{array}\right)>1-\epsilon.$$

donc avec proba $\geq 1 - \epsilon$, les $(\Delta_i T^L)_{-R \leq i \leq R}$ ne dépendent que de la configuration initiale sur [-M, M].

■ Sur $\mathbb{Z}/n\mathbb{Z}$, pour n assez grand : un intervalle suffit également

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

 $\mathbb{Z}/n\mathbb{Z}$

Sur 2

Loi de T^L

Conclusio

Référence

Soient R > 0, $\epsilon > 0$.

■ Sur Z: l'environnement local autour de 0 est suffisant p.s. :

$$\exists M>0: \mathbb{P}^{\mathbb{Z},d_{\mathbf{b}},d_{\mathbf{t}},p}\left(\begin{array}{c}\text{il y a }R+2\text{ trous à gauche et à droite de 0}}\\\text{dans l'intervalle }[-M,M]\end{array}\right)>1-\epsilon.$$

donc avec proba $\geq 1 - \epsilon$, les $(\Delta_i T^L)_{-R \leq i \leq R}$ ne dépendent que de la configuration initiale sur [-M, M].

- Sur $\mathbb{Z}/n\mathbb{Z}$, pour n assez grand : un intervalle suffit également
- Il existe un couplage des configurations locales initiales sur \mathbb{Z} et sur $\mathbb{Z}/n\mathbb{Z}$ (avec proba $\geq 1-\epsilon$, pour n assez grand)

clé :
$$\frac{N_{\mathbf{b}}(n)}{n} o d_{\mathbf{b}}, \frac{N_{\mathbf{t}}(n)}{n} o d_{\mathbf{t}}$$

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

Ĺ

Définitio

Loi de T^L

Conclusio

Référence

Soient R > 0, $\epsilon > 0$.

Sur \mathbb{Z} : l'environnement local autour de 0 est suffisant p.s. :

$$\exists M>0: \mathbb{P}^{\mathbb{Z},d_{\mathbf{b}},d_{\mathbf{t}},\rho}\left(\begin{array}{c}\text{il y a }R+2\text{ trous à gauche et à droite de 0}}\\\text{dans l'intervalle }[-M,M]\end{array}\right)>1-\epsilon.$$

donc avec proba $\geq 1 - \epsilon$, les $(\Delta_i T^L)_{-R \leq i \leq R}$ ne dépendent que de la configuration initiale sur [-M, M].

- Sur $\mathbb{Z}/n\mathbb{Z}$, pour n assez grand : un intervalle suffit également
- Il existe un couplage des configurations locales initiales sur \mathbb{Z} et sur $\mathbb{Z}/n\mathbb{Z}$ (avec proba $\geq 1-\epsilon$, pour n assez grand) clé : $\frac{N_{\mathbf{b}}(n)}{n} \to d_{\mathbf{b}}$, $\frac{N_{\mathbf{t}}(n)}{n} \to d_{\mathbf{t}}$
- \blacksquare on peut donc coupler les trajectoires des balles autour de 0 sur $\mathbb Z$ et sur $\mathbb Z/n\mathbb Z$

avec probabilité
$$\geq 1 - 2\epsilon$$
, $\forall i \in [-R, R], \Delta_i \boldsymbol{T^{L^{(n)}}} = \Delta_i \boldsymbol{T^L}$.

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur

Sur

Définition Loi de T^L

Conclusio

Références

avec probabilité $\geq 1 - 2\epsilon$, $\forall i \in [-R,R], \Delta_i \boldsymbol{\mathcal{T}^{L(n)}} = \Delta_i \boldsymbol{\mathcal{T}^L}$

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur

Zoé Varin

Introduction

Loi de T^L sur

Sur

Définition

Loi de T^L

Conclusion

Référence

avec probabilité
$$\geq 1 - 2\epsilon$$
, $\forall i \in [-R, R], \Delta_i T^{L^{(n)}} = \Delta_i T^L$

On a égalité des lois suivantes :

$$\mathcal{L}\left(\left(\Delta_{i} \boldsymbol{\mathcal{T}}^{\boldsymbol{L}^{(n)}}\right)_{i \in I_{N_{\ell}}}\right) = \mathcal{L}\left(\left(\boldsymbol{L}_{i}^{(\lambda)}\right)_{i \in I_{N_{\ell}}} \middle| \sum_{i \in I_{N_{\ell}}} \boldsymbol{L}_{i}^{(\lambda)} = n - N_{\ell}\right)$$

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur $\mathbb{Z}/n\mathbb{Z}$

Sur

Loi de T^L

Conclusio

Référence

avec probabilité
$$\geq 1 - 2\epsilon$$
, $\forall i \in [-R, R], \Delta_i \boldsymbol{T^{L^{(n)}}} = \Delta_i \boldsymbol{T^L}$

On a égalité des lois suivantes :

$$\mathcal{L}\left(\left(\Delta_{i} \mathcal{T}^{L(n)}\right)_{i \in I_{N_{\ell}}}\right) = \mathcal{L}\left(\left(L_{i}^{(\lambda)}\right)_{i \in I_{N_{\ell}}} \middle| \sum L_{i}^{(\lambda)} = n - N_{\ell}\right)$$

 Et ce conditionnement par la somme est asymptotiquement négligeable :

$$\mathbb{P}\left(\Delta_{i} \boldsymbol{\mathcal{T}^{L(n)}} = 2b_{i}, -R \leq i \leq R-1\right) \underset{n \to \infty}{\longrightarrow} \prod_{i=-R}^{R-1} \mathbb{P}(\boldsymbol{\mathcal{L}}_{i}^{(\lambda)} = 2b_{i})$$

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur \mathbb{Z}

Zoé Varin

Introduction

Loi de T^L sur Z/nZ

Sur

Définition

Conclusio

Référence

avec probabilité
$$\geq 1 - 2\epsilon$$
, $\forall i \in [-R, R], \Delta_i \boldsymbol{T}^{L^{(n)}} = \Delta_i \boldsymbol{T}^L$

On a égalité des lois suivantes :

$$\mathcal{L}\left(\left(\Delta_{i} \mathcal{T}^{L(n)}\right)_{i \in I_{N_{\ell}}}\right) = \mathcal{L}\left(\left(L_{i}^{(\lambda)}\right)_{i \in I_{N_{\ell}}} \middle| \sum L_{i}^{(\lambda)} = n - N_{\ell}\right)$$

Et ce conditionnement par la somme est asymptotiquement négligeable :

$$\mathbb{P}\left(\Delta_{i} \boldsymbol{\mathcal{T}^{L(n)}} = 2b_{i}, -R \leq i \leq R-1\right) \underset{n \to \infty}{\longrightarrow} \prod_{i=-R}^{R-1} \mathbb{P}(\boldsymbol{\mathcal{L}}_{i}^{(\lambda)} = 2b_{i})$$

Conclusion :

avec probabilité
$$\geq 1 - 3\epsilon$$
, $\forall i \in [-R, R], \Delta_i T^L = L_i^{(\lambda)}$.

Résultat final

Un système de particules : le modèle de golf $\operatorname{sur} \mathbb{Z} / n \mathbb{Z}$ et sur

Zoé Varin

Loi de TL sur

Loi de TL

Théorème

Il existe $\mathcal{G}, \mathcal{H}, \lambda$ et $\left(\mathbf{L}_{i}^{(\lambda)}\right)_{i \in \mathbb{Z}}$ (explicites) tels que pour tout R > 0, $\mathbb{P}\left(\Delta_{i}\mathbf{T}^{L} = 2b_{i}, -R \leq i \leq R\right) = \prod_{i=1}^{R} \mathbb{P}\left(\mathbf{L}_{i}^{(\lambda)} = 2b_{i}\right)$

$$\mathbb{P}\left(\Delta_{i}\boldsymbol{\mathcal{T}^{L}}=2b_{i},-R\leq i\leq R\right)=\prod_{i=-R}^{N}\mathbb{P}\left(\boldsymbol{\mathcal{L}}_{i}^{(\lambda)}=2b_{i}\right)$$

Bilan et travail en cours

Un système de particules : le modèle de golf sur $\mathbb{Z}/n\mathbb{Z}$ et sur

Zoé Varin

Introduction

Loi de T^L sur

 $\mathbb{Z}/n\mathbb{Z}$

Définit

Loi de T^L

Conclusion

Références

- Extension sur $\mathbb{Z}/n\mathbb{Z}$
 - plusieurs balles par sommets : ok
 - trous à capacité plus grande que 1?
- calcul de la distance parcourue par une balle? (asymptotique dans [PRS19])

Références

Un système de particules : le modèle de golf $\operatorname{sur} \mathbb{Z} / n\mathbb{Z}$ et sur

Zoé Varin

Loi de TL sur

Loi de TL

Références



Persi Diaconis and William Fulton, A growth model, a game, an algebra, Lagrange inversion, and characteristic classes, Rend. Sem. Mat. Univ. Pol. Torino 49 (1991), no. 1, 95-119.

Gregory F Lawler, Maury Bramson, and David Griffeath, Internal diffusion limited aggregation, The Annals of Probability (1992), 2117-2140

Philippe Nadeau and Vasu Tewari, Remixed eulerian numbers, 2022.

Michał Przykucki, Alexander Roberts, and Alex Scott, Parking on the integers, 2019.

