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Tiling with parallelograms

n pairwise non-collinear vectors v0, ..., vn−1 (n ≥ 3) of the plane
define

(n
2

)
prototiles Tij := {λvi + µvj | 0 ≤ λ, µ ≤ 1}

Tiles: translated prototiles, placed edge to edge
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Cut and project n → d

e0, ..., en−1 canonical basis of Rn

E ⊂ Rn affine d-plane, called slope

Cut C : { d-dim facets of Zn, ⊂ E + [0, 1]n }
Projection π : C → E along F such that E ⊕ F = Rn

We get a tiling of E

2 → 1

e0

e1

E
E + [0, 1]2

e0

e1
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Valid projection

Valid ⇔ simple condition on determinants.
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Property and examples

E contains no rational line ⇒ non-periodic tilings

Rauzy Ammann-Beenker Penrose
3 → 2 4 → 2 5 → 2
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Subperiods

Shadow: projection of the cut along n − d − 1 base vectors.

Subperiod: vector of E which projects on a period of a shadow.
It has d + 1 integer coordinates.
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Local rules

Local rules: patterns of a given size characterize a tiling.

Golden Octagonal tiling (4 → 2)

Theorem (Bédaride, Fernique, 2017)

A 2-dim slope E ⊂ R4 has local rules iff E is characterized by its
subperiods.
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FP-method to get Ammann bars

We give an algorithm which

takes as input a 2-dim. slope E in R4,

checks whether E is characterized by subperiods,

if so, checks whether E admits a fine projection,

if so, outputs a finite set of tiles decorated by segments, such
that Ammann bars rules yield 4 → 2 tilings with slope E .

In short:

Local rules ≃ Subperiods ≃ Ammann bars
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Key idea

Choose a projection s.t. points which are aligned in the shadows
are already aligned in the tiling, and force periodicity of the
shadows using Ammann bars rules.
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Step 1: finding a fine projection

Definition

A fine projection for a 2-dimensional slope E ⊂ R4 is a valid
projection π : R4 → R2 such that for every i ∈ {0, 1, 2, 3}, π(pi )
and π(ei ) are collinear.

There is not always a fine projection: Golden Octagonal

We provide an example for which it exists: Cyrenaic
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Step 2: drawing the lines directed by subperiods
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Step 3: generating a finite tileset
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Main results

Theorem (Fernique, Porrier, 2022)

Any set of tiles constructed by our algorithm from a 2-dim. slope
E of R4 forms tilings with the same subperiods as E .

Corollary

If E is characterized by its subperiods then the tileset with
Ammann bars rules yields only tilings with slope E .

Corollary

If E is totally irrational then the tileset is aperiodic.
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Summary of Part 1

New method to get aperiodic tilesets

General result in ”Ammann Bars for Octagonal Tilings”:

https://arxiv.org/abs/2205.13973

Repo for our SageMath code:

https://github.com/cporrier/Cyrenaic
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Wang tiles

Wang tiles : unit squares of R2 with colored edges; a tiling with
Wang tiles is valid iff adjacent tiles have the same color on their
common edge.
Example: Jeandel and Rao’s set of 11 Wang tiles (smallest, 2015)
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Slicing of golden octagonal and patterns

A B1 C1 D1

B2 C2 D2 E2

E1 F1

F2

G1

G2

H1

H2

17 / 21



Ammann bars for 4 → 2 tilings with local rules Aperiodic Wang tilesets from 4 → 2 tilings References

New aperiodic Wang tileset

A B1 C1 D1

B2 C2 D2 E2

E1 F1

F2

G1

G2

H1

H2

A B1 C1 D1 E1 F1 H1

G2a G2b G2'a G2'b G2'''bG2'''aG2''bG2''a

G1a G1b G1' G1''a G1''b G1'''

B2 C2 D2 E2 F2 H2
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Cut and project n → d

e0, ..., en−1 canonical basis of Rn

E ⊂ Rn affine d-plane, called slope

Cut C : { d-dim facets of Zn, ⊂ E + [0, 1]n }
Projection π : C → E along F such that E ⊕ F = Rn

We get a tiling of E

Window W : image of E + [0, 1]n projected on F along E

2 → 1

E
E + [0, 1]2

C

F
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Frequencies of patterns

A

B1

B2

C1

C2

D1

D2

E1

E2

F1
F2

G1

G2
H1

H2

ν([G1]) = ν([G2]) = 5− 3φ ≃ 14.5898%

ν([A]) = ν([D1]) = ν([D2]) = 5φ− 8 ≃ 9.017%

ν([H1]) = ν([H2]) = 5
2 − 3

2φ ≃ 7.2949%

ν([E1]) = ν([E2]) = ν([F1]) = ν([F2]) = 5
2φ− 4 ≃ 4.5085%

ν([B1]) = ν([B2]) = ν([C1]) = ν([C2]) = 13
2 − 4φ ≃ 2.7864%
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Perspectives

Towards a symbolic representation for rotations on a torus.
Example of Labbé / Jeandel-Rao : D0 = (R2/Γ0,Z2,R0) with
Γ0 = ⟨(φ, 0), (1, φ+ 3)⟩Z and R0(n, x) = Rn

0 (x) = x+ n, n ∈ Z2

Source: Sébastien Labbé, “Markov Partitions for Toral
Z2-rotations Featuring Jeandel–Rao Wang Shift and Model Sets”
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Thank you for your attention!
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Cyrenaic tilings

4 → 2 tilings of slope E characterized by subperiods:

p0 = (
√
3, 0, 1, 1),

p1 = (1,
√
3− 1,−1, 1),

p2 = (1,−1,
√
3 + 1, 0),

p3 = (2, 1,−1,
√
3).
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Finding subperiods

Example: Golden octagonal tilings

Slope E generated by u⃗ = (−1, 0, φ, φ) and v⃗ = (0, 1, φ, 1), where

φ = 1+
√
5

2 is the golden mean.

Integer coordinates of p0?

p0 = (∗, 0, 1, 1)

Real coordinate? p0 = (1− φ, 0, 1, 1)
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