Aperiodic tilesets derived from Cut and project tilings

Carole Porrier

Université Sorbonne Paris Nord Université du Québec à Montréal

Séminaire CODYS, Bordeaux 5 décembre 2022

Aperiodic Wang tilesets from 4 \rightarrow 2 tilings $_{\rm OOOOOO}$

References 0

Ammann bars in Penrose tilings

Aperiodic Wang tilesets from 4 \rightarrow 2 tilings 000000

References 0

Ammann bars in Penrose tilings

Aperiodic Wang tilesets from 4 \rightarrow 2 tilings $_{000000}$

References 0

Ammann bars in Penrose tilings

Aperiodic Wang tilesets from 4 \rightarrow 2 tilings $_{000000}$

References

Tiling with parallelograms

n pairwise non-collinear vectors $v_0, ..., v_{n-1}$ $(n \ge 3)$ of the plane define $\binom{n}{2}$ prototiles $T_{ij} := \{\lambda v_i + \mu v_j \mid 0 \le \lambda, \mu \le 1\}$ Tiles: translated prototiles, placed edge to edge

Aperiodic Wang tilesets from 4 \rightarrow 2 tilings

References 0

Cut and project $n \rightarrow d$

 $e_0, ..., e_{n-1}$ canonical basis of \mathbb{R}^n $E \subset \mathbb{R}^n$ affine *d*-plane, called **slope**

Aperiodic Wang tilesets from 4 \rightarrow 2 tilings 000000

References 0

Cut and project $n \rightarrow d$

 $e_0, ..., e_{n-1}$ canonical basis of \mathbb{R}^n $E \subset \mathbb{R}^n$ affine *d*-plane, called **slope**

Cut C : { d-dim facets of \mathbb{Z}^n , $\subset E + [0,1]^n$ }

Aperiodic Wang tilesets from 4 \rightarrow 2 tilings 000000

References 0

Cut and project $n \rightarrow d$

 $e_0, ..., e_{n-1}$ canonical basis of \mathbb{R}^n $E \subset \mathbb{R}^n$ affine *d*-plane, called **slope**

Cut C : { d-dim facets of \mathbb{Z}^n , $\subset E + [0,1]^n$ }

Aperiodic Wang tilesets from 4 \rightarrow 2 tilings

References 0

Cut and project $n \rightarrow d$

 $e_0, ..., e_{n-1}$ canonical basis of \mathbb{R}^n $E \subset \mathbb{R}^n$ affine *d*-plane, called **slope**

Cut C : { d-dim facets of \mathbb{Z}^n , $\subset E + [0, 1]^n$ }

Projection $\pi: C \to E$ along F such that $E \oplus F = \mathbb{R}^n$

We get a tiling of E

Aperiodic Wang tilesets from 4 \rightarrow 2 tilings

References 0

Cut and project $n \rightarrow d$

 $e_0, ..., e_{n-1}$ canonical basis of \mathbb{R}^n $E \subset \mathbb{R}^n$ affine *d*-plane, called **slope**

Cut C : { d-dim facets of \mathbb{Z}^n , $\subset E + [0, 1]^n$ }

Projection $\pi: C \to E$ along F such that $E \oplus F = \mathbb{R}^n$

We get a tiling of E

Aperiodic Wang tilesets from 4 \rightarrow 2 tilings

References 0

Cut and project $n \rightarrow d$

 $e_0, ..., e_{n-1}$ canonical basis of \mathbb{R}^n $E \subset \mathbb{R}^n$ affine *d*-plane, called **slope**

Cut C : { d-dim facets of \mathbb{Z}^n , $\subset E + [0, 1]^n$ }

Projection $\pi: C \to E$ along F such that $E \oplus F = \mathbb{R}^n$

We get a tiling of E

Aperiodic Wang tilesets from 4 \rightarrow 2 tilings

References 0

Valid projection

Valid \Leftrightarrow simple condition on determinants.

Aperiodic Wang tilesets from 4 \rightarrow 2 tilings 000000

References 0

Property and examples

E contains no rational line \Rightarrow non-periodic tilings

Aperiodic Wang tilesets from 4 \rightarrow 2 tilings 000000

References 0

Subperiods

Shadow: projection of the cut along n - d - 1 base vectors.

Aperiodic Wang tilesets from 4 \rightarrow 2 tilings

References 0

Subperiods

Shadow: projection of the cut along n - d - 1 base vectors.

Subperiod: vector of *E* which projects on a period of a shadow. It has d + 1 integer coordinates.

Local rules: patterns of a given size characterize a tiling.

Theorem (Bédaride, Fernique, 2017)

A 2-dim slope $E \subset \mathbb{R}^4$ has local rules iff E is characterized by its subperiods.

FP-method to get Ammann bars

We give an algorithm which

- takes as input a 2-dim. slope E in \mathbb{R}^4 ,
- checks whether E is characterized by subperiods,
- if so, checks whether E admits a fine projection,
- if so, outputs a finite set of tiles decorated by segments, such that Ammann bars rules yield $4 \rightarrow 2$ tilings with slope *E*.

FP-method to get Ammann bars

We give an algorithm which

- takes as input a 2-dim. slope E in \mathbb{R}^4 ,
- checks whether E is characterized by subperiods,
- if so, checks whether E admits a fine projection,
- if so, outputs a finite set of tiles decorated by segments, such that Ammann bars rules yield $4 \rightarrow 2$ tilings with slope *E*.

In short:

Local rules \simeq Subperiods \simeq Ammann bars

Aperiodic Wang tilesets from 4 \rightarrow 2 tilings

References 0

Key idea

Aperiodic Wang tilesets from 4 \rightarrow 2 tilings

References 0

Key idea

Choose a projection s.t. points which are aligned in the shadows are already aligned in the tiling, and force periodicity of the shadows using Ammann bars rules.

Aperiodic Wang tilesets from 4 \rightarrow 2 tilings

Key idea

Choose a projection s.t. points which are aligned in the shadows are already aligned in the tiling, and force periodicity of the shadows using Ammann bars rules.

Aperiodic Wang tilesets from 4 \rightarrow 2 tilings 000000

References 0

Step 1: finding a fine projection

Definition

A fine projection for a 2-dimensional slope $E \subset \mathbb{R}^4$ is a valid projection $\pi : \mathbb{R}^4 \to \mathbb{R}^2$ such that for every $i \in \{0, 1, 2, 3\}$, $\pi(p_i)$ and $\pi(e_i)$ are collinear.

- There is not always a fine projection: Golden Octagonal
- We provide an example for which it exists: Cyrenaic

Step 2: drawing the lines directed by subperiods

Aperiodic Wang tilesets from 4 \rightarrow 2 tilings 000000

References 0

Step 3: generating a finite tileset

Main results

Theorem (Fernique, Porrier, 2022)

Any set of tiles constructed by our algorithm from a 2-dim. slope E of \mathbb{R}^4 forms tilings with the same subperiods as E.

Corollary

If E is characterized by its subperiods then the tileset with Ammann bars rules yields only tilings with slope E.

Corollary

If E is totally irrational then the tileset is aperiodic.

Summary of Part 1

- New method to get aperiodic tilesets
- General result in "Ammann Bars for Octagonal Tilings": https://arxiv.org/abs/2205.13973
- Repo for our SageMath code:

https://github.com/cporrier/Cyrenaic

Wang tiles

Wang tiles : unit squares of \mathbb{R}^2 with colored edges; a tiling with Wang tiles is valid iff adjacent tiles have the same color on their common edge.

Example: Jeandel and Rao's set of 11 Wang tiles (smallest, 2015)

Aperiodic Wang tilesets from 4 \rightarrow 2 tilings $\odot \bullet \circ \circ \circ \circ$

References 0

Slicing of golden octagonal and patterns

References 0

New aperiodic Wang tileset

Cut and project $n \rightarrow d$

 $e_0, ..., e_{n-1}$ canonical basis of \mathbb{R}^n $E \subset \mathbb{R}^n$ affine *d*-plane, called **slope Cut** $C : \{ d\text{-dim facets of } \mathbb{Z}^n, \subset E + [0,1]^n \}$ **Projection** $\pi : C \to E$ along F such that $E \oplus F = \mathbb{R}^n$ We get a tiling of E

Cut and project $n \rightarrow d$

 $e_0, ..., e_{n-1}$ canonical basis of \mathbb{R}^n $E \subset \mathbb{R}^n$ affine *d*-plane, called **slope Cut** $C : \{ d\text{-dim facets of } \mathbb{Z}^n, \subset E + [0,1]^n \}$ **Projection** $\pi : C \to E$ along F such that $E \oplus F = \mathbb{R}^n$ We get a tiling of E

Window W: image of $E + [0, 1]^n$ projected on F along E

Cut and project $n \rightarrow d$

 $e_0, ..., e_{n-1}$ canonical basis of \mathbb{R}^n $E \subset \mathbb{R}^n$ affine *d*-plane, called **slope Cut** $C : \{ d\text{-dim facets of } \mathbb{Z}^n, \subset E + [0,1]^n \}$ **Projection** $\pi : C \to E$ along F such that $E \oplus F = \mathbb{R}^n$ We get a tiling of E

Window W: image of $E + [0, 1]^n$ projected on F along E

Aperiodic Wang tilesets from 4 \rightarrow 2 tilings 000000

Frequencies of patterns

 $\nu([G1]) = \nu([G2]) = 5 - 3\varphi \simeq 14.5898\%$ $\nu([A]) = \nu([D1]) = \nu([D2]) = 5\varphi - 8 \simeq 9.017\%$ $\nu([H1]) = \nu([H2]) = \frac{5}{2} - \frac{3}{2}\varphi \simeq 7.2949\%$ $\nu([E1]) = \nu([E2]) = \nu([F1]) = \nu([F2]) = \frac{5}{2}\varphi - 4 \simeq 4.5085\%$ $\nu([B1]) = \nu([B2]) = \nu([C1]) = \nu([C2]) = \frac{13}{2} - 4\varphi \simeq 2.7864\%$

Aperiodic Wang tilesets from 4 \rightarrow 2 tilings 000000

References 0

Perspectives

Towards a symbolic representation for rotations on a torus. Example of Labbé / Jeandel-Rao : $\mathcal{D}_0 = (\mathbb{R}^2/\Gamma_0, \mathbb{Z}^2, R_0)$ with $\Gamma_0 = \langle (\varphi, 0), (1, \varphi + 3) \rangle_{\mathbb{Z}}$ and $R_0(\mathbf{n}, \mathbf{x}) = R_0^{\mathbf{n}}(\mathbf{x}) = \mathbf{x} + \mathbf{n}$, $\mathbf{n} \in \mathbb{Z}^2$

Source: Sébastien Labbé, "Markov Partitions for Toral $\mathbb{Z}^2\text{-}rotations$ Featuring Jeandel–Rao Wang Shift and Model Sets"

References

- Baake, M. and Grimm, U. (2013). Aperiodic Order. Vol 1. A Mathematical Invitation.
- Bédaride, N. and Fernique, Th. (2015). When periodicities enforce aperiodicity.
- Grünbaum, B. and Shephard, G. C. (1987). Tilings and Patterns.
- Jeandel, E. and Rao, M. (2015). An aperiodic set of 11 Wang tiles.
- Labbé, S. (2021). Markov Partitions for Toral \mathbb{Z}^2 -rotations Featuring Jeandel–Rao Wang Shift and Model Sets.
- Lind, D. and Marcus, B. (1995). An Introduction to Symbolic Dynamics and Coding.

Thank you for your attention!

 $4 \rightarrow 2$ tilings of slope *E* characterized by subperiods:

$$\begin{array}{rcl} p_0 & = & (\sqrt{3},0,1,1), \\ p_1 & = & (1,\sqrt{3}-1,-1,1), \\ p_2 & = & (1,-1,\sqrt{3}+1,0), \\ p_3 & = & (2,1,-1,\sqrt{3}). \end{array}$$

Slope *E* generated by $\vec{u} = (-1, 0, \varphi, \varphi)$ and $\vec{v} = (0, 1, \varphi, 1)$, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

Integer coordinates of p_0 ?

Slope *E* generated by $\vec{u} = (-1, 0, \varphi, \varphi)$ and $\vec{v} = (0, 1, \varphi, 1)$, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

Integer coordinates of p_0 ? $p_0 = (*, 0, 1, 1)$

Slope *E* generated by $\vec{u} = (-1, 0, \varphi, \varphi)$ and $\vec{v} = (0, 1, \varphi, 1)$, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

Integer coordinates of p_0 ? $p_0 = (*, 0, 1, 1)$

Real coordinate?

Slope *E* generated by $\vec{u} = (-1, 0, \varphi, \varphi)$ and $\vec{v} = (0, 1, \varphi, 1)$, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

Integer coordinates of p_0 ? $p_0 = (*, 0, 1, 1)$

Real coordinate? $p_0 = (1 - \varphi, 0, 1, 1)$