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Finite state automata

A (nondeterministic) automaton can be described as a tuple
(A,V ,E , q,F ), where

A is a finite set (alphabet)
(V ,E ) is a finite directed graph with arcs labeled with letters
from A
q0 ∈ V is an initial state
F ⊂ V is a set of terminal states

A word w ∈ A∗ is accepted by the automaton if there exists a
path from q0 to some terminal state whose arcs spell the word w .
The automaton is deterministic if each state has at most one
outgoing arc labeled with each letter ; it is complete deterministic
if each state has exactly one such outgoing arc for each letter.
Two automata are equivalent if they accept the same sets of
words.
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Two automata
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Some well-known facts

The languages recognized by deterministic and (possibly)
nondeterministic automata are the same (regular languages).
There is a standard algorithm that, given a nondeterministic
automaton, builds an equivalent deterministic automaton
(“powerset construction”)
The resulting automaton may have exponentially many more
states, and some automata require that many states.
There is also a well-known minimization algorithm that
builds the unique (up to isomorphism) minimum-size
deterministic automaton equivalent to a given automaton ; the
state complexity of an automaton (or regular language) is
the number of states of this minimum automaton.
Informal question : what is the typical state complexity of a
“random” nondeterministic automaton ?
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The powerset construction

([Rabin, Scott 1959])
Starting from a non-deterministic automaton with state set V , the
standard deterministic construction of an equivalent deterministic
automaton uses state set P(V ) as state set.

Initial state is {q0} ;
the a-transition from some state S ⊂ V goes to the state of
all destinations of original a-transitions from all states s ∈ S ;
a state is terminal if it contains an original terminal state ;
one can keep only the states accessible from {q0}, but all
nonempty sets can be accessible.
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Random k-out graphs

(k is the alphabet size, n is the number of states)

Up to choice of initial and terminal states, a complete
deterministic automaton is a k-out multigraph : each vertex
has exactly k outgoing edges (multiple arcs and loops allowed)

A reasonable, simple model of random automata is to pick the
destinations of the kn arcs independently, uniformly at random
(if required : pick the initial state uniformly, and the terminal
states according to some reasonable distribution).
The local and global structure of such random directed graphs
is well understood.
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Some known results on random DFAs

With asymptotic probability 1, the graph has a single giant
strongly connected component, of size νkn (0 < νk < 1)

Typical distances inside this component are of order log(n)
Cycles outside this component are short and there are few of
them [Cai-Devroye 2017]
Very rough “explanation” : the indegree of a vertex is close to
a Poisson variable with expectation k, and

locally, the breadth-first exploration of vertices accessible from
u looks like a regular tree of degree k ;
locally, the breadth-first “backwards” exploration of vertices
from which u is accessible looks like a Galton-Watson tree with
progeny distributed as Poisson variables
the constant νk is the survival probability of such a process
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The special case k = 1

Each state has a transition to a uniform state.

Starting from a fixed state and following transitions will
ultimately lead to completing a cycle.
Expected number of transitions for this is Θ(n1/2) (“birthday
paradox”)
Conditioned on this number being m, the cycle length is
uniform in [[1, n]]
This is also what one observes for larger k by looking at only
transitions for one letter.
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A random model for nondeterministic automata

There is no obviously natural model for random
nondeterministic automata.

Simple models, such as having a-transition from u to v with
probability p > 0 (independently, for each u and v) will very
likely accept all words (depending on model for terminal
states)
Our model : “minimally nondeterministic”

start from a random deterministic (k-out) transition structure
add one additional transition : pick two states p, q at random
and add an a-transition from p to q
add choice of (uniform) initial state and terminal states ; for
technical reasons, we consider models where each state is
terminal with equal probability p (0 < p < 1) ; actually,
p = ω(n−1/2) and 1− p = ω(n−1/2) suffices.

Call this model, random almost-deterministic automata (with
alphabet size k and n states).
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Main result

Theorem (CDKN ’23)
For fixed alphabet size k ≥ 2, the expected state
complexity of random almost-deterministic automata with n
states grows faster than any polynomial in n.
More precisely, for any finite d > 0, there exist positive
constants A and ε such that there is (asymptotic) probability
at least ε that a random almost-deterministic automaton with
n states has state complexity at least And .
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High-level sketch of proof

We “look at” transitions as needed, sequentially (so the
remaining transitions remain independent of all those already
observed).

Step 1 : find a short word w such that reading w from q
leads back to state p.
Step 2 : use w to find a “large” state {p0, . . . , p2d−1} in the
powerset construction
Steps 3-4 : hope that b-transitions from the pi lead to
independent cycles of length at Θ(n1/2), with pairwise
coprime lengths ; this leads to Ω(nd ) states in the powerset
construction.
Step 5 : hope that the distribution of terminal states in cycles
ensures these states remain after minimization.
We ensure that, conditioned on the previous steps being
successful, each new step succeeds with probability bounded
away from 0.
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Requests on the graph structure

Our exploration of the graph makes two types of requests on the
graph structure for the deterministic automaton :

“out” : given a state u and a letter x , find out the destination
of the x -transition from u

“in” : given a state u, find out all transitions leading to u
The exploration algorithm fails if the results of all requests
mention more than O(n1/2) different states.
Conditioned on the algorithm not having failed yet, all still
unknown transitions are independent, with destinations
uniform among n − O(n1/2) states.
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Step 1 : find a short cycle

Assume the additional a-transition is from state p to state q.

Alternating between “forward” and “backward”, find the
states at distance 1, 2, . . . from q (“out” requests), and the
states at distance 1, 2, . . . to p (“in” requests).
Fail : if more than cn1/2 states are seen, or if some level in
one of the exploration trees fails to have at least 3/2 as many
states as the previous level.
Succeed : if the new levels of the trees intersect without
failure.
Result : the success probability is at least some constant, and
in this case, we find a word w of length O(log n) such that
reading w from q leads to p.
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Step 2 : find a large state

Starting from p = p0 in the deterministic automaton, read
words aw repeatedly (2d − 1 times)

Fail : if this path of length O(log n) intersects the O(n1/2)
states previously seen.
Succeed otherwise ; find states p1, . . . , p2d−1 such that
reading aw from pi leads to pi+1.
Result : the success probability is at least some constant
(actually the failure probability is o(1)). Note that
b-transitions from pi are still unknown.
Also, note that in the powerset construction, reading word
(aw)2d from state {p} leads to state P = {p0, p1, . . . , p2d−1}.
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b-transitions from pi are still unknown.
Also, note that in the powerset construction, reading word
(aw)2d from state {p} leads to state P = {p0, p1, . . . , p2d−1}.
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Step 3 : read b-transitions

Starting from each state pi , repeatedly read b-transitions until
a b-cycle is found.

Fail : if the 2d cycles are not all distinct, or if one requires
less than n1/2 or more than 2n1/2 transitions, or if a cycle
length is shorter than 1/2n1/2 or longer than n1/2.
In case of success, we get 2d separate b-cycles, of lengths
`0, . . . , `2d−1 ; the `i are independent, and uniform in
[c ′n1/2, cn1/2]
Result : the success probability is at least some constant.
Note that in the powerset construction, repeatedly reading
b-transitions from state P leads to states of size 2d that are
made of one state ouf of each cycle.
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Step 4 : cross fingers about cycle lengths

Succeed : if the cycle lengths `0, . . . , `2d−1 are pairwise
coprime.

Lemma (from Tóth, 2015) : the success probability is
asymptotically at least some positive constant.
Consequence : reading words of the form bm from state P in
the powerset automaton, results in at least

∏
i `i ≥ (n/4)d

different states.
These states make up one big cycle in the powerset
automaton.
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Step 5 : look at terminal states

We now have a large number of states making up one big
cycle C in the powerset automaton.

Fact : provided each original cycle of the deterministic
automaton contains at least one terminal state and one
non-terminal state, the cyclic word on C recording which
states are terminal or not is primitive (not a power of a
shorter word).
This occurs with asymptotic probability 1 under our
hypotheses, and implies that the states in C are pairwise
non-equivalent (they remain distinct under minimization)
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Wrapping it up : accessibility

All we still need is that, in the powerset automaton, the state
{p} is accessible from the initial state {q0}.

This is equivalent to state p being accessible from q0 in the
deterministic autmaton (only paths going through p “see” the
nondeterministic transition)
For this it is sufficient that p belongs to the giant strongly
connected component, which is unique and large with
asymptotic probability 1 (thus unaffected by our conditioning
by events of probability far from 0 or 1).
This concludes the proof !
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Conclusion

Our result is not that surprising, but requires a detailed
analysis. . .
Most of the proof sketch feels like the “explosion” probability
should actually be pretty high, possibly as high as ν2

k
(probability that both states in the additional transition lie in
the giant component) ; this would require a more detailed
analysis though.
The most unsatisfying part of our proof is the need for a
model that means the original automaton has many terminal
states ; it would be nice if a single terminal state was sufficient.
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Dernière remarque

Merci à Nicolas pour ces années à la
tête du GT !
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