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Normal sequences

A sequence of symbols is normal if all finite words of the same
length occur in it with the same frequency.

If x ∈ AN and w ∈ A∗, the frequency of w in x is defined by

freq(x,w) = lim
N→∞

|x[1:N ]|w
N

.

where |z|w denotes the number of occurrences of w in z.

A sequence x ∈ AN is normal if for each w ∈ A∗:

freq(x,w) =
1

(#A)|w|

where I #A is the cardinality of the alphabet A

I |w| is the length of w.



Normal sequences (continued)

Theorem (Borel, 1909)

The decimal expansion of almost every real number in [0, 1) is a
normal sequence of symbols in {0, 1, . . . , 9}.

Nevertheless, not so many examples have been proved normal.
Some of them are:

I Champernowne 1933 (natural numbers):

12345678910111213141516171819202122232425 · · ·

I Besicovitch 1935 (squares):

149162536496481100121144169196225256289324 · · ·

I Copeland and Erdős 1946 (primes):

235711131719232931374143475359616771737983 · · ·



Equidistribution

A sequence (xn)n>1 of real numbers in [0; 1) is equidistributed if
for any real numbers α, β such that 0 6 α 6 β 6 1,

lim
N→∞

#{1 6 n 6 N : xn ∈ [α;β]}
N

= β − α

Example

The sequence ({nα})n>1 is equidistributed for each irrational
real number α (where {x} = x− bxc is the fractional part of x).

Proposition

The base b expansion of the real number α is normal if and only
if the sequence ({bnα})n>1 is equidistributed.

The block w of length k occurs in α at position n+ 1 iff {bnα}
lies in the interval [0.w; 0.w + 2−k].
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Discrepancy

The discrepancy DN of a sequence (xn)n>1 of real numbers
in [0; 1) is defined by

DN = sup
06α6β61

∣∣∣∣#{1 6 n 6 N : xn ∈ [α;β]}
N

− (β − α)

∣∣∣∣ .
Proposition

The sequence (xn)n>1 is equidistributed iff lim
N→∞

DN = 0.



Minimal discrepancy

Theorem (Schmidt 72)

There exists a constant C > 0 such that for any sequence of real
numbers, its discrepancy satisfies DN > C logN/N for infinitely
many N > 1.

This lower bound is achieved by the van der Corput sequence.

0 1

x 1
=

0.
1

For a sequence of the form ({bnα})n>1, the lowest discrepancy
known so far is (logN)2/N . It is achieved by Levin’s sequence.
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De Bruijn necklaces

A necklace is a cyclically considered word (written on a circle).
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A k-de Bruijn necklace is a necklace in which each word of
length k has exactly one (cyclic) occurrence. The necklace
00010111 is a 3-de Bruijn necklace.
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De Bruijn necklaces as Eulerian circuits

A k-de Bruijn necklace is Eulerian circuit in the local graph
whose vertices are words of length k − 1 and edges words of
length k.

The 3-de Bruijn necklace 00010111 corresponds to the following
Eulerian circuit.

00

01

10

110

1

0

1

0

1 1

0



De Bruijn necklaces as Eulerian circuits

A k-de Bruijn necklace is Eulerian circuit in the local graph
whose vertices are words of length k − 1 and edges words of
length k.
The 3-de Bruijn necklace 00010111 corresponds to the following
Eulerian circuit.

00

01

10

110

1

0

1

0

1 1

0



BEST theorem

Theorem (BEST 1951)

The number ec(G) of Eulerian circuits in a connected graph
G = (V,E) is

ec(G) = tw(G)
∏
v∈V

(deg(v)− 1)!

where tw(G) is the number of spanning trees directed to w. This
number is equal to any cofactor of the Laplacian matrix.

Proposition

The number of k-de Bruijn necklaces over an alphabet of size n
is

(n!)n
k−1

nk
.

For n = 2, I k = 1 : 01 (and 10)

I k = 2 : 0011 (0110, 1100 and 1001)

I k = 3 : 00010111 and 11101000



Perfect necklaces
A (k,m)-perfect necklace is a necklace in which each word of
length k has m occurrences at positions which are different
modulo m. Its length must be m(#A)k.

The necklace 00010111 is not a (2, 2)-perfect necklace because
the two occurrences of 01 have the same position modulo 2.
The necklace 00111001 is a (2, 2)-perfect necklace.
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More generally, the concatenation in lexicographic order of all
words of length k gives a (k, k)-perfect necklace. Here is k = 3:

000001010011100101110111.
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Perfect necklaces as Eulerian circuits

A (k,m)-perfect is an Eulerian circuit in the graph whose
vertex set is Ak−1 × {0, . . . ,m− 1}.

The (2, 2)-perfect necklace 00111001 corresponds to the
following Eulerian circuit.
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Nested perfect necklaces

A (k,m)-nested perfect necklace is a necklace such that for each
1 6 ` 6 k, each block of length m(#A)` starting at a position
multiple of m(#A)` is a (`,m)-perfect necklace. Its length
is m(#A)k.

Example

The necklace 00111001 is a (2, 2)-nested perfect necklace since

I 00111001 is a (2, 2)-perfect necklace
I 0011 and 1001 are (1, 2)-perfect necklaces



Nested perfect necklaces
A (k,m)-nested perfect necklace is a necklace such that for each
1 6 ` 6 k, each block of length m(#A)` starting at a position
multiple of m(#A)` is a (`,m)-perfect necklace. Its length
is m(#A)k.

Example

0000111110100101110000110110100110000111001011010100101111100001

is a (4, 4)-nested perfect necklace since

I it is a (4, 4)-perfect necklace

I made of two (3, 4)-perfect necklaces

0000111110100101110000110110100110000111001011010100101111100001

I made of four (2, 4)-perfect necklaces

0000111110100101110000110110100110000111001011010100101111100001

I made of eight (1, 4)-perfect necklaces

0000111110100101110000110110100110000111001011010100101111100001



Levin’s sequence

Proposition

Levin’s sequence of discrepancy (logN)2/N is a concatenation
u0u1u2 · · · where each un is a (2n, 2n)-nested perfect necklace of
length 2n+2n:

01︸︷︷︸
2

00111001︸ ︷︷ ︸
8

000011111010 · · ·︸ ︷︷ ︸
64

00000000111111111010 · · ·︸ ︷︷ ︸
2048



Levin’s construction
Let n > 0. Let M̂n be the 2n×2n-matrix defined by
M1,i = Mi,2n = 1 for 1 6 i 6 2n and Mi,j = Mi−1,j +Mi,j+1.

M̂2 =


1 1 1 1
4 3 2 1
10 6 3 1
20 10 4 1


Let Mn be the matrix over F2 defined by Mn ≡ M̂n mod 2.
The matrices Mn can also be defined recursively by

M0 = (1) and Mn+1 =

(
Mn Mn

0 Mn

)
.

The matrices M1 and M2 are then

M1 =

(
1 1
0 1

)
and M2 =


1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

 .



Levin’s construction (continued)

Words over {0, 1} are identified with column vectors over F2.
Let w1, . . . , w22n be the enumeration in lexicographic order of
all words of length 2n over {0, 1}. Let w′i = Mnwi for each
1 6 i 6 22n .

Theorem
The concatenation w′1 · · ·w′22n is a (2n, 2n)-nested perfect necklace.

Examples

For n = 1, i 1 2 3 4

wi 00 01 10 11
w′i 00 11 10 01

For n = 2, i 1 2 · · · 16

wi 0000 0001 . . . 1111
w′i 0000 1111 . . . 0001



More matrices
Let k1, . . . , km be integers such that ki − 1 6 ki+1 6 ki for
1 6 i < 2n and k2n = 0 Define

Mk1,...,k2n
n =

(
σk1(C1), . . . , σkm(Cm)

)
.

where Mn = (C1, . . . , Cm). For n = 2, the eight matrices:

M0,0,0,0
2 M1,0,0,0

2 M1,1,0,0
2 M2,1,0,0

2
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1




0 1 1 1
1 1 0 1
0 0 1 1
0 0 0 1




0 0 1 1
1 1 0 1
0 1 1 1
0 0 0 1




0 0 1 1
0 1 0 1
1 1 1 1
0 0 0 1


M1,1,1,0

2 M2,1,1,0
2 M2,2,1,0

2 M3,2,1,0
2

0 0 0 1
1 1 1 1
0 1 0 1
0 0 1 1




0 0 0 1
0 1 1 1
1 1 0 1
0 0 1 1




0 0 0 1
0 0 1 1
1 1 0 1
0 1 1 1




0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 1





Affine necklaces

Let M be one matrix Mk1,...,k2n
n and z be a fixed vector of

length 2n. Let w′i = Mwi + z for each 1 6 i 6 22n . An affine
necklace is the concatenation w′1 · · ·w′2n .

Theorem
A necklace is a nested perfect necklace if and only if it is an
affine necklace. There are 22n+1−1 (2n, 2n)-nested perfect
necklaces.

Theorem
Any sequence which is the concatenation of (2n, 2n)-nested
perfect necklaces for n = 0, 1, 2, . . . has discrepancy (logN)2/N
(as the one defined by Levin).



Open questions

I What is the number of (k,m)-nested perfect necklaces over
some alphabet A ? We only know when #A = 2 and m is a
power of 2.

I What is the least possible discrepancy for a sequence of the
form ({bnα})n>1 for some real number α ?

I 2-dimensional objects : nested perfect toroidal arrays

0 0 0 1 0 1 0 0
0 0 0 1 0 0 0 1
1 0 1 1 1 1 1 0
1 0 1 1 1 0 1 1
1 0 1 1 1 1 1 0
0 0 0 1 0 0 0 1
0 0 0 1 0 1 0 0
1 0 1 1 1 0 1 1

Merci
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