#### Discrepancy and nested perfect necklaces

Verónica  $\operatorname{Becher}^{1^*}$  <u>Olivier Carton</u><sup>2\*</sup>

 $^1 \mathrm{Universidad}$  de Buenos Aires

 $^2\mathrm{IRIF},$ Université Paris Cité & CNRS

 $^* \rm Supported$  by LIA SINFIN

LaBRI - November 2022

Outline

Normality

Discrepancy

Nested perfect necklaces

Affine necklaces

| | | |

#### Normal sequences

A sequence of symbols is **normal** if all finite words of the same length occur in it with the same frequency.

If  $x \in A^{\mathbb{N}}$  and  $w \in A^*$ , the frequency of w in x is defined by

$$\operatorname{freq}(x,w) = \lim_{N \to \infty} \frac{|x[1:N]|_w}{N}.$$

where  $|z|_w$  denotes the number of occurrences of w in z.

A sequence  $x \in A^{\mathbb{N}}$  is normal if for each  $w \in A^*$ :

$$freq(x,w) = \frac{1}{(\#A)^{|w|}}$$

# where ► #A is the cardinality of the alphabet A |w| is the length of w.

# Normal sequences (continued)

#### Theorem (Borel, 1909)

The decimal expansion of almost every real number in [0, 1) is a normal sequence of symbols in  $\{0, 1, \ldots, 9\}$ .

Nevertheless, not so many examples have been proved normal. Some of them are:

• Champernowne 1933 (natural numbers):

 $12345678910111213141516171819202122232425\cdots$ 

► Besicovitch 1935 (squares):

 $149162536496481100121144169196225256289324\cdots$ 

► Copeland and Erdős 1946 (primes):

 $235711131719232931374143475359616771737983\cdots$ 

# Equidistribution

A sequence  $(x_n)_{n \ge 1}$  of real numbers in [0; 1) is equidistributed if for any real numbers  $\alpha, \beta$  such that  $0 \le \alpha \le \beta \le 1$ ,

$$\lim_{N \to \infty} \frac{\#\{1 \le n \le N : x_n \in [\alpha; \beta]\}}{N} = \beta - \alpha$$

#### Example

The sequence  $(\{n\alpha\})_{n\geq 1}$  is equidistributed for each irrational real number  $\alpha$  (where  $\{x\} = x - \lfloor x \rfloor$  is the fractional part of x).

#### Proposition

The base b expansion of the real number  $\alpha$  is normal if and only if the sequence  $(\{b^n \alpha\})_{n \ge 1}$  is equidistributed.

# Equidistribution

A sequence  $(x_n)_{n \ge 1}$  of real numbers in [0; 1) is equidistributed if for any real numbers  $\alpha, \beta$  such that  $0 \le \alpha \le \beta \le 1$ ,

$$\lim_{N \to \infty} \frac{\#\{1 \le n \le N : x_n \in [\alpha; \beta]\}}{N} = \beta - \alpha$$

#### Example

The sequence  $(\{n\alpha\})_{n\geq 1}$  is equidistributed for each irrational real number  $\alpha$  (where  $\{x\} = x - \lfloor x \rfloor$  is the fractional part of x).

#### Proposition

The base b expansion of the real number  $\alpha$  is normal if and only if the sequence  $(\{b^n \alpha\})_{n \ge 1}$  is equidistributed.

The block w of length k occurs in  $\alpha$  at position n + 1 iff  $\{b^n \alpha\}$  lies in the interval  $[0.w; 0.w + 2^{-k}]$ .

# Discrepancy

The discrepancy  $D_N$  of a sequence  $(x_n)_{n \ge 1}$  of real numbers in [0; 1) is defined by

$$D_N = \sup_{0 \le \alpha \le \beta \le 1} \left| \frac{\#\{1 \le n \le N : x_n \in [\alpha; \beta]\}}{N} - (\beta - \alpha) \right|.$$

#### Proposition

The sequence 
$$(x_n)_{n \ge 1}$$
 is equidistributed iff  $\lim_{N \to \infty} D_N = 0$ .

| | | |

#### Theorem (Schmidt 72)

There exists a constant C > 0 such that for any sequence of real numbers, its discrepancy satisfies  $D_N \ge C \log N/N$  for infinitely many  $N \ge 1$ .



#### Theorem (Schmidt 72)

There exists a constant C > 0 such that for any sequence of real numbers, its discrepancy satisfies  $D_N \ge C \log N/N$  for infinitely many  $N \ge 1$ .



#### Theorem (Schmidt 72)

There exists a constant C > 0 such that for any sequence of real numbers, its discrepancy satisfies  $D_N \ge C \log N/N$  for infinitely many  $N \ge 1$ .



#### Theorem (Schmidt 72)

There exists a constant C > 0 such that for any sequence of real numbers, its discrepancy satisfies  $D_N \ge C \log N/N$  for infinitely many  $N \ge 1$ .



#### Theorem (Schmidt 72)

There exists a constant C > 0 such that for any sequence of real numbers, its discrepancy satisfies  $D_N \ge C \log N/N$  for infinitely many  $N \ge 1$ .



#### Theorem (Schmidt 72)

There exists a constant C > 0 such that for any sequence of real numbers, its discrepancy satisfies  $D_N \ge C \log N/N$  for infinitely many  $N \ge 1$ .



#### Theorem (Schmidt 72)

There exists a constant C > 0 such that for any sequence of real numbers, its discrepancy satisfies  $D_N \ge C \log N/N$  for infinitely many  $N \ge 1$ .



#### Theorem (Schmidt 72)

There exists a constant C > 0 such that for any sequence of real numbers, its discrepancy satisfies  $D_N \ge C \log N/N$  for infinitely many  $N \ge 1$ .



#### Theorem (Schmidt 72)

There exists a constant C > 0 such that for any sequence of real numbers, its discrepancy satisfies  $D_N \ge C \log N/N$  for infinitely many  $N \ge 1$ .



#### Theorem (Schmidt 72)

There exists a constant C > 0 such that for any sequence of real numbers, its discrepancy satisfies  $D_N \ge C \log N/N$  for infinitely many  $N \ge 1$ .



#### Theorem (Schmidt 72)

There exists a constant C > 0 such that for any sequence of real numbers, its discrepancy satisfies  $D_N \ge C \log N/N$  for infinitely many  $N \ge 1$ .



#### Theorem (Schmidt 72)

There exists a constant C > 0 such that for any sequence of real numbers, its discrepancy satisfies  $D_N \ge C \log N/N$  for infinitely many  $N \ge 1$ .



#### Theorem (Schmidt 72)

There exists a constant C > 0 such that for any sequence of real numbers, its discrepancy satisfies  $D_N \ge C \log N/N$  for infinitely many  $N \ge 1$ .



#### Theorem (Schmidt 72)

There exists a constant C > 0 such that for any sequence of real numbers, its discrepancy satisfies  $D_N \ge C \log N/N$  for infinitely many  $N \ge 1$ .



#### Theorem (Schmidt 72)

There exists a constant C > 0 such that for any sequence of real numbers, its discrepancy satisfies  $D_N \ge C \log N/N$  for infinitely many  $N \ge 1$ .



#### Theorem (Schmidt 72)

There exists a constant C > 0 such that for any sequence of real numbers, its discrepancy satisfies  $D_N \ge C \log N/N$  for infinitely many  $N \ge 1$ .

This lower bound is achieved by the van der Corput sequence.



For a sequence of the form  $(\{b^n \alpha\})_{n \ge 1}$ , the lowest discrepancy known so far is  $(\log N)^2/N$ . It is achieved by Levin's sequence.

A necklace is a cyclically considered word (written on a circle).



A necklace is a cyclically considered word (written on a circle).



A necklace is a cyclically considered word (written on a circle).



A necklace is a cyclically considered word (written on a circle).



A necklace is a cyclically considered word (written on a circle).



A necklace is a cyclically considered word (written on a circle).



A necklace is a cyclically considered word (written on a circle).



A necklace is a cyclically considered word (written on a circle).



A necklace is a cyclically considered word (written on a circle).



#### De Bruijn necklaces as Eulerian circuits

A k-de Bruijn necklace is Eulerian circuit in the local graph whose vertices are words of length k - 1 and edges words of length k.



# De Bruijn necklaces as Eulerian circuits

A k-de Bruijn necklace is Eulerian circuit in the local graph whose vertices are words of length k - 1 and edges words of length k.

The 3-de Bruijn necklace 00010111 corresponds to the following Eulerian circuit.



# BEST theorem

#### Theorem (BEST 1951)

The number ec(G) of Eulerian circuits in a connected graph G = (V, E) is

$$ec(G) = t_w(G) \prod_{v \in V} (deg(v) - 1)!$$

where  $t_w(G)$  is the number of spanning trees directed to w. This number is equal to any cofactor of the Laplacian matrix.

#### Proposition

The number of k-de Bruijn necklaces over an alphabet of size n is  $\frac{(n!)^{n^{k-1}}}{n^k}.$ 

For n = 2,  $\blacktriangleright k = 1$ : 01 (and 10)  $\blacktriangleright k = 2$ : 0011 (0110, 1100 and 1001)

• k = 3 : 00010111 and 11101000

A (k, m)-perfect necklace is a necklace in which each word of length k has m occurrences at positions which are different modulo m. Its length must be  $m(\#A)^k$ .

A (k, m)-perfect necklace is a necklace in which each word of length k has m occurrences at positions which are different modulo m. Its length must be  $m(\#A)^k$ .

| 1 | 0 | 0 | word | $\operatorname{mod}$ |              | word | $\mod$ |
|---|---|---|------|----------------------|--------------|------|--------|
| 1 |   | 0 | 00   | 1                    | $\checkmark$ | 10   | 1      |
| 0 |   | 1 | 00   | 0                    |              | 10   | 0      |
| 0 |   | 1 | 01   | 1                    |              | 11   | 1      |
| 0 | 1 | T | 01   | 0                    |              | 11   | 0      |

A (k, m)-perfect necklace is a necklace in which each word of length k has m occurrences at positions which are different modulo m. Its length must be  $m(\#A)^k$ .

| 1 | 0 | 0 | word | $\operatorname{mod}$ |              | word | $\mod$ |
|---|---|---|------|----------------------|--------------|------|--------|
| 1 |   | 0 | 00   | 1                    | $\checkmark$ | 10   | 1      |
| 0 |   | 1 | 00   | 0                    |              | 10   | 0      |
| 0 |   | 1 | 01   | 1                    |              | 11   | 1      |
| U | 1 | T | 01   | 0                    | $\checkmark$ | 11   | 0      |

A (k, m)-perfect necklace is a necklace in which each word of length k has m occurrences at positions which are different modulo m. Its length must be  $m(\#A)^k$ .

| $\begin{array}{c} 0\\ 1\end{array}$ | 0 | word | mod |   | word         | $\operatorname{mod}$ |   |              |
|-------------------------------------|---|------|-----|---|--------------|----------------------|---|--------------|
|                                     |   | 0    | 00  | 1 | $\checkmark$ | 10                   | 1 |              |
| 0                                   |   | 1    | 00  | 0 |              | 10                   | 0 |              |
| 0 1                                 |   | 1    | 01  | 1 |              | 11                   | 1 | $\checkmark$ |
|                                     | 1 | 1    | 01  | 0 | $\checkmark$ | 11                   | 0 |              |

A (k, m)-perfect necklace is a necklace in which each word of length k has m occurrences at positions which are different modulo m. Its length must be  $m(\#A)^k$ .

| 1 | 0 | 0 | word | $\operatorname{mod}$ |              | word | $\operatorname{mod}$ |              |
|---|---|---|------|----------------------|--------------|------|----------------------|--------------|
| T |   | 0 | 00   | 1                    | $\checkmark$ | 10   | 1                    |              |
| 0 |   | 1 | 00   | 0                    |              | 10   | 0                    |              |
| 0 |   | 1 | 01   | 1                    |              | 11   | 1                    | $\checkmark$ |
|   | 1 | 1 | 01   | 0                    | $\checkmark$ | 11   | 0                    | √            |

A (k, m)-perfect necklace is a necklace in which each word of length k has m occurrences at positions which are different modulo m. Its length must be  $m(\#A)^k$ . The perfect perfect perfect perfect perfect perfect perfect.

| 1                                           | 0 | 0 | word | $\operatorname{mod}$ |              | word | $\operatorname{mod}$ |              |
|---------------------------------------------|---|---|------|----------------------|--------------|------|----------------------|--------------|
| 1                                           |   | 0 | 00   | 1                    | $\checkmark$ | 10   | 1                    | $\checkmark$ |
| 0                                           |   | 1 | 00   | 0                    |              | 10   | 0                    |              |
| $egin{array}{c} 0 & & \\ & 1 & \end{array}$ |   | 1 | 01   | 1                    |              | 11   | 1                    | $\checkmark$ |
|                                             | 1 | 1 | 01   | 0                    | $\checkmark$ | 11   | 0                    | $\checkmark$ |

A (k, m)-perfect necklace is a necklace in which each word of length k has m occurrences at positions which are different modulo m. Its length must be  $m(\#A)^k$ .

| 1 | 0 | 0  | word | $\operatorname{mod}$ |              | word | $\operatorname{mod}$ |              |
|---|---|----|------|----------------------|--------------|------|----------------------|--------------|
| 1 | 0 | 00 | 1    | $\checkmark$         | 10           | 1    | $\checkmark$         |              |
| 0 |   | 1  | 00   | 0                    | $\checkmark$ | 10   | 0                    |              |
| 0 |   | 1  | 01   | 1                    |              | 11   | 1                    | $\checkmark$ |
| 0 | 1 | 1  | 01   | 0                    | $\checkmark$ | 11   | 0                    | $\checkmark$ |

A (k, m)-perfect necklace is a necklace in which each word of length k has m occurrences at positions which are different modulo m. Its length must be  $m(\#A)^k$ .

| 1 | 0 | 0  | word | $\operatorname{mod}$ |              | word | $\operatorname{mod}$ |              |
|---|---|----|------|----------------------|--------------|------|----------------------|--------------|
| 1 | 0 | 00 | 1    | $\checkmark$         | 10           | 1    | $\checkmark$         |              |
| 0 |   | 1  | 00   | 0                    | $\checkmark$ | 10   | 0                    |              |
| 0 |   | 1  | 01   | 1                    | $\checkmark$ | 11   | 1                    | $\checkmark$ |
| 0 | 1 | T  | 01   | 0                    | $\checkmark$ | 11   | 0                    | $\checkmark$ |

A (k, m)-perfect necklace is a necklace in which each word of length k has m occurrences at positions which are different modulo m. Its length must be  $m(\#A)^k$ .

| 1                                           | 0 | 0  | word | $\operatorname{mod}$ |              | word | $\operatorname{mod}$ |              |
|---------------------------------------------|---|----|------|----------------------|--------------|------|----------------------|--------------|
| 1                                           | 0 | 00 | 1    | $\checkmark$         | 10           | 1    | $\checkmark$         |              |
| 0                                           |   | 1  | 00   | 0                    | $\checkmark$ | 10   | 0                    | $\checkmark$ |
| $egin{array}{c} 0 & & \\ & 1 & \end{array}$ |   | 1  | 01   | 1                    | $\checkmark$ | 11   | 1                    | $\checkmark$ |
|                                             | 1 | T  | 01   | 0                    | $\checkmark$ | 11   | 0                    | $\checkmark$ |

A (k, m)-perfect necklace is a necklace in which each word of length k has m occurrences at positions which are different modulo m. Its length must be  $m(\#A)^k$ . The necklace 00010111 is not a (2, 2)-perfect necklace because

the two occurrences of 01 have the same position modulo 2. The necklace 00111001 is a (2, 2)-perfect necklace.

| 1                                           | 0 | 0 | word | $\operatorname{mod}$ |              | word | $\operatorname{mod}$ |              |
|---------------------------------------------|---|---|------|----------------------|--------------|------|----------------------|--------------|
| T                                           |   | 0 | 00   | 1                    | $\checkmark$ | 10   | 1                    | $\checkmark$ |
| 0                                           |   | 1 | 00   | 0                    | $\checkmark$ | 10   | 0                    | $\checkmark$ |
| $egin{array}{c} 0 & & \\ & 1 & \end{array}$ |   | 1 | 01   | 1                    | $\checkmark$ | 11   | 1                    | $\checkmark$ |
|                                             | 1 | T | 01   | 0                    | $\checkmark$ | 11   | 0                    | $\checkmark$ |

More generally, the concatenation in lexicographic order of all words of length k gives a (k, k)-perfect necklace. Here is k = 3:

000001010011100101110111.

#### Perfect necklaces as Eulerian circuits

A (k, m)-perfect is an Eulerian circuit in the graph whose vertex set is  $A^{k-1} \times \{0, \dots, m-1\}$ .



#### Perfect necklaces as Eulerian circuits

A (k, m)-perfect is an Eulerian circuit in the graph whose vertex set is  $A^{k-1} \times \{0, \ldots, m-1\}$ . The (2, 2)-perfect necklace 00111001 corresponds to the following Eulerian circuit.



# Nested perfect necklaces

A (k, m)-nested perfect necklace is a necklace such that for each  $1 \leq \ell \leq k$ , each block of length  $m(\#A)^{\ell}$  starting at a position multiple of  $m(\#A)^{\ell}$  is a  $(\ell, m)$ -perfect necklace. Its length is  $m(\#A)^k$ .

#### Example

The necklace 00111001 is a (2, 2)-nested perfect necklace since

- ▶ 00111001 is a (2, 2)-perfect necklace
- ▶ 0011 and 1001 are (1, 2)-perfect necklaces

# Nested perfect necklaces

A (k, m)-nested perfect necklace is a necklace such that for each  $1 \leq \ell \leq k$ , each block of length  $m(\#A)^{\ell}$  starting at a position multiple of  $m(\#A)^{\ell}$  is a  $(\ell, m)$ -perfect necklace. Its length is  $m(\#A)^k$ .

#### Example

- is a (4, 4)-nested perfect necklace since
  - it is a (4, 4)-perfect necklace
  - made of two (3, 4)-perfect necklaces

• made of four (2, 4)-perfect necklaces

#### Proposition

Levin's sequence of discrepancy  $(\log N)^2/N$  is a concatenation  $u_0u_1u_2\cdots$  where each  $u_n$  is a  $(2^n, 2^n)$ -nested perfect necklace of length  $2^{n+2^n}$ :



#### Levin's construction

Let  $n \ge 0$ . Let  $\hat{M}_n$  be the  $2^n \times 2^n$ -matrix defined by  $M_{1,i} = M_{i,2^n} = 1$  for  $1 \le i \le 2^n$  and  $M_{i,j} = M_{i-1,j} + M_{i,j+1}$ .  $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 4 & 3 & 2 & 1 \end{pmatrix}$ 

$$\hat{M}_2 = \begin{pmatrix} 4 & 3 & 2 & 1 \\ 10 & 6 & 3 & 1 \\ 20 & 10 & 4 & 1 \end{pmatrix}$$

Let  $M_n$  be the matrix over  $\mathbb{F}_2$  defined by  $M_n \equiv \hat{M}_n \mod 2$ . The matrices  $M_n$  can also be defined recursively by

$$M_0 = (1)$$
 and  $M_{n+1} = \begin{pmatrix} M_n & M_n \\ 0 & M_n \end{pmatrix}$ .

The matrices  $M_1$  and  $M_2$  are then

$$M_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 and  $M_2 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ .

| | | | |

## Levin's construction (continued)

Words over  $\{0, 1\}$  are identified with column vectors over  $\mathbb{F}_2$ . Let  $w_1, \ldots, w_{2^{2^n}}$  be the enumeration in lexicographic order of all words of length  $2^n$  over  $\{0, 1\}$ . Let  $w'_i = M_n w_i$  for each  $1 \leq i \leq 2^{2^n}$ .

#### Theorem

The concatenation  $w'_1 \cdots w'_{2^{2^n}}$  is a  $(2^n, 2^n)$ -nested perfect necklace.

#### Examples

| For $n = 1$ , |        | $i \mid$ | 1  | 2    | 3  | 4   |   |
|---------------|--------|----------|----|------|----|-----|---|
|               | _      | $w_i$    | 00 | 01   | 10 | 11  |   |
|               |        | $w_i'$   | 00 | 11   | 10 | 01  |   |
| For $n = 2$ , | i      | 1        |    | 2    |    | 16  | j |
|               | $w_i$  | 000      | )0 | 0001 |    | 111 |   |
|               | $w'_i$ | 000      | 00 | 1111 |    | 000 | ) |

#### More matrices

Let  $k_1, \ldots, k_m$  be integers such that  $k_i - 1 \leq k_{i+1} \leq k_i$  for  $1 \leq i < 2^n$  and  $k_{2^n} = 0$  Define

$$M_n^{k_1,...,k_{2^n}} = (\sigma^{k_1}(C_1),\ldots,\sigma^{k_m}(C_m)).$$

where  $M_n = (C_1, \ldots, C_m)$ . For n = 2, the eight matrices:



## Affine necklaces

Let M be one matrix  $M_n^{k_1,\ldots,k_{2^n}}$  and z be a fixed vector of length  $2^n$ . Let  $w'_i = Mw_i + z$  for each  $1 \le i \le 2^{2^n}$ . An affine necklace is the concatenation  $w'_1 \cdots w'_{2^n}$ .

#### Theorem

A necklace is a nested perfect necklace if and only if it is an affine necklace. There are  $2^{2^{n+1}-1}$   $(2^n, 2^n)$ -nested perfect necklaces.

#### Theorem

Any sequence which is the concatenation of  $(2^n, 2^n)$ -nested perfect necklaces for n = 0, 1, 2, ... has discrepancy  $(\log N)^2/N$ (as the one defined by Levin).

## Open questions

- What is the number of (k, m)-nested perfect necklaces over some alphabet A? We only know when #A = 2 and m is a power of 2.
- ▶ What is the least possible discrepancy for a sequence of the form  $(\{b^n \alpha\})_{n \ge 1}$  for some real number  $\alpha$  ?
- ▶ 2-dimensional objects : nested perfect toroidal arrays



Merci