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Normal sequences

A sequence of symbols is normal if all finite words of the same
length occur in it with the same frequency.

If z € AN and w € A*, the frequency of w in z is defined by

1:N||w
freq(x,w) = A}gnoo MNH

where |z|,, denotes the number of occurrences of w in z.

A sequence x € AN is normal if for each w € A*:

1
freq(m, w) = w
where P #A is the cardinality of the alphabet A
» |w| is the length of w.



Normal sequences (continued)

Theorem (Borel, 1909)

The decimal expansion of almost every real number in [0,1) is a
normal sequence of symbols in {0,1,...,9}.

Nevertheless, not so many examples have been proved normal.
Some of them are:

» Champernowne 1933 (natural numbers):
12345678910111213141516171819202122232425 - - -
» Besicovitch 1935 (squares):
149162536496481100121144169196225256289324 - - -
» Copeland and Erdds 1946 (primes):

235711131719232931374143475359616771737983 - - - LELF



Equidistribution

A sequence (zp,)n>1 of real numbers in [0; 1) is equidistributed if
for any real numbers «, 8 such that 0 < a < 8 <1,

]&Enm#{lénéijv:xne[aaﬁ]}zﬁ_a

Example

The sequence ({na}),>1 is equidistributed for each irrational
real number « (where {z} = z — |z is the fractional part of x).
Proposition

The base b expansion of the real number « is normal if and only
if the sequence ({b"a})n>1 is equidistributed.



Equidistribution

A sequence (zp,)n>1 of real numbers in [0; 1) is equidistributed if
for any real numbers «, 8 such that 0 < a < 8 <1,
#{1 <n<N:z, € [o; 6]}
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Example

The sequence ({na}),>1 is equidistributed for each irrational
real number « (where {z} = z — |z is the fractional part of x).

Proposition

The base b expansion of the real number « is normal if and only
if the sequence ({b"a})n>1 is equidistributed.

The block w of length k occurs in « at position n + 1 iff {b"«a}
lies in the interval [0.w;0.w + 27%].



Discrepancy

The discrepancy Dy of a sequence (z,)n>1 of real numbers
in [0;1) is defined by

1<n<N: € |a;
DN — Sup #{ n xn [Od B]}
0<a<p<l N

—(B—a)].

Proposition
The sequence (xy)n>1 is equidistributed iff lim Dy = 0.
N—o00



Minimal discrepancy

Theorem (Schmidt 72)

There exists a constant C > 0 such that for any sequence of real
numbers, its discrepancy satisfies Dy = Clog N/N for infinitely
many N > 1.

This lower bound is achieved by the van der Corput sequence.
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Minimal discrepancy

Theorem (Schmidt 72)

There exists a constant C > 0 such that for any sequence of real
numbers, its discrepancy satisfies Dy > Clog N/N for infinitely
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Minimal discrepancy

Theorem (Schmidt 72)

There exists a constant C > 0 such that for any sequence of real
numbers, its discrepancy satisfies Dy > Clog N/N for infinitely
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Minimal discrepancy

Theorem (Schmidt 72)

There exists a constant C > 0 such that for any sequence of real
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Minimal discrepancy

Theorem (Schmidt 72)

There exists a constant C > 0 such that for any sequence of real
numbers, its discrepancy satisfies Dy > Clog N/N for infinitely
many N > 1.

This lower bound is achieved by the van der Corput sequence.

O DD D
L Dy & > N
Q@@ SRR N AN
Y //// 7y //////// //////
§2 > VY G0 GV 6 §0 ¢V §V N ¢
HO—0—0—90 00000 00 0 0 0 0
0 1

For a sequence of the form ({b"a}),>1, the lowest discrepancy

known so far is (log N)2/N. It is achieved by Levin’s sequence.I -
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De Bruijn necklaces as Eulerian circuits

A k-de Bruijn necklace is Eulerian circuit in the local graph
whose vertices are words of length k£ — 1 and edges words of
length k.




De Bruijn necklaces as Eulerian circuits

A k-de Bruijn necklace is Eulerian circuit in the local graph
whose vertices are words of length k£ — 1 and edges words of
length k.

The 3-de Bruijn necklace 00010111 corresponds to the following
Eulerian circuit.




BEST theorem
Theorem (BEST 1951)

The number ec(G) of Eulerian circuits in a connected graph
G=(V,E) is
ec(@) =t (G) [ (deg(v) — 1)!

veV

where t,(G) is the number of spanning trees directed to w. This
number is equal to any cofactor of the Laplacian matriz.
Proposition
The number of k-de Bruijn necklaces over an alphabet of size n
is (nl)"
nk

Forn=2, » k=1:01 (and 10)

» k=2:0011 (0110, 1100 and 1001)

> k£ =3: 00010111 and 11101000 FrF

k—1




Perfect necklaces

A (k,m)-perfect necklace is a necklace in which each word of
length k£ has m occurrences at positions which are different
modulo m. Its length must be m(#A)*.
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Perfect necklaces

A (k,m)-perfect necklace is a necklace in which each word of
length k£ has m occurrences at positions which are different
modulo m. Its length must be m(#A)*.

The necklace 00010111 is not a (2, 2)-perfect necklace because
the two occurrences of 01 have the same position modulo 2.
The necklace 00111001 is a (2, 2)-perfect necklace.

0 word mod word mod
! 0 0w 1 v|10 1
0 1 00 0 v | 10 0o Vv
0 1 01 1 v 1 1 v
1 01 0o v | 11 0o Vv

More generally, the concatenation in lexicographic order of all
words of length k gives a (k, k)-perfect necklace. Here is k = 3:

000001010011100101110111.
IriF



Perfect necklaces as Fulerian circuits

A (k,m)-perfect is an Eulerian circuit in the graph whose
vertex set is A*~1 x {0,...,m —1}.




Perfect necklaces as Fulerian circuits

A (k,m)-perfect is an Eulerian circuit in the graph whose
vertex set is A*~1 x {0,...,m —1}.

The (2, 2)-perfect necklace 00111001 corresponds to the
following Eulerian circuit.




Nested perfect necklaces

A (k, m)-nested perfect necklace is a necklace such that for each
1 < £ < k, each block of length m(#A)¢ starting at a position
multiple of m(#A)* is a (£, m)-perfect necklace. Its length

is m(#A)~.

Example
The necklace 00111001 is a (2, 2)-nested perfect necklace since

» 00111001 is a (2, 2)-perfect necklace
» 0011 and 1001 are (1,2)-perfect necklaces



Nested perfect necklaces

A (k,m)-nested perfect necklace is a necklace such that for each
1 < £ < k, each block of length m(#A)¢ starting at a position
multiple of m(#A)* is a (¢, m)-perfect necklace. Its length

is m(#A)E.

Example
0000111110100101110000110110100110000111001011010100101111100001
is a (4, 4)-nested perfect necklace since
> it is a (4, 4)-perfect necklace
» made of two (3, 4)-perfect necklaces
0000111110100101110000110110100110000111001011010100101111100001
» made of four (2,4)-perfect necklaces
0000111110100101110000110110100110000111001011010100101111100001

» made of eight (1,4)-perfect necklaces

0000111110100101110000110110100110000111001011010100101111100001 I T1F



Levin’s sequence

Proposition
Levin’s sequence of discrepancy (log N)?/N is a concatenation

upurug - - - where each uy, is a (2",2")-nested perfect necklace of
length 27+2"

01 00111001000011111010---00000000111111111010 - - -
2 8 64 ) 2048




Levin’s construction

Let n > 0. Let M, be the 2" x2"-matrix defined by
Mi;=M;on =1for 1 <i<2" and M;; = M;_1; + M; j11.

1 1 1 1
. 4 3 21
Ma=11 ¢ 3 1
20 10 4 1

Let M, be the matrix over Fo defined by M, = Mn mod 2.

The matrices M,, can also be defined recursively by

M, Mn)

My= (1) and M,y = ( 0 M

The matrices M; and M> are then

11
M1:<0 1) and MQZ

SO O -
SO ==
SO = O =
— ==



Levin’s construction (continued)

Words over {0, 1} are identified with column vectors over Fo.

Let wq, ..., wqen be the enumeration in lexicographic order of
all words of length 2" over {0,1}. Let w} = M,w; for each
1<i<2?,

Theorem

The concatenation w} - - - w’zzn is a (2",2")-nested perfect necklace.

Examples
Forn =1, 1 ‘ 1 2 3 4
w; |00 01 10 11
w00 11 10 01
For n = 2, i| 1 2 ... 16
w; | 0000 0001 ... 1111
w; | 0000 1111 ... 0001




More matrices
Let ki, ..., kn be integers such that k; — 1 < k51 < k; for
1 <7< 2" and k9» = 0 Define

Mb = (RO, (C).

where M,, = (C4,...,Cy,). For n = 2, the eight matrices:

MS’O’O’O M21,0,0,0 M21,1,0,0 M22,1,0,0
1 1 1 1 01 11 0011 0 011
010 1 1 1 0 1 1 1 0 1 01 01
00 1 1 0 01 1 01 1 1 1 1 11
00 0 1 0 0 01 00 0 1 0 0 0 1

M21,1,1,0 M22’1’1’0 M22,2,1,0 M23’2’1’0
00 01 0 001 00 01 0 001
1 1 1 1 01 11 00 11 0 0 11
01 0 1 1 1 0 1 1 1 01 01 01
00 1 1 0 0 11 01 11 1 1 1 ll .



Affine necklaces

Let M be one matrix M,’fl""’kQ" and z be a fixed vector of
length 2". Let w, = Mw; + z for each 1 < i < 22" An affine
necklace is the concatenation wj - - - why.

Theorem

A necklace is a nested perfect necklace if and only if it is an
affine necklace. There are 22" 1 (2™, 2™)-nested perfect
necklaces.

Theorem

Any sequence which is the concatenation of (2™,2")-nested
perfect necklaces forn = 0,1,2,... has discrepancy (log N)?/N
(as the one defined by Levin).



Open questions

» What is the number of (k, m)-nested perfect necklaces over
some alphabet A ? We only know when #A4 =2 and m is a
power of 2.

» What is the least possible discrepancy for a sequence of the
form ({b"a})n,>1 for some real number « ?

P> 2-dimensional objects : nested perfect toroidal arrays

00010100
00010001
10111110
10111011
10111110
00010001
00010100
10111011

Merci
NAK;
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