The canonical complex of the weak order

Doriann Albertin

Université de Bordeaux – LaBRI

doriann.albertin@labri.fr

GT Combinatoire et interactions

2022-11-14

Joint work with Vincent Pilaud (CNRS & École Polytechnique)
Lattices and canonical join representations
Definition

A (finite) **lattice** L is a (finite) poset where every family X of elements of L has a **join** $\bigvee X$ (smallest upper bound) and a **meet** $\bigwedge X$ (greatest lower bound).

Definition

The **canonical join representation** of an element x is a subset $J \subseteq L$ such that:

- $\bigvee J = x$,
- $J' \subsetneq J \Rightarrow \bigvee J' \neq x$,
- J is **lowest** in L with these properties.

When it always exists, we call the lattice **join semidistributive**.
Irreducibility

Definition
The elements that are their own canonical join representation are the join irreducibles. In finite lattices, they are those covering only one element. Canonical join representations are made of join irreducibles.
Definition
The elements that are their own canonical join representation are the join irreducibles. In finite lattices, they are those covering only one element. Canonical join representations are made of join irreducibles.

Irreducibility

LaBRI (UB) 3 / 29
The elements that are their own canonical join representation are the join irreducibles. In finite lattices, they are those covering only one element. Canonical join representations are made of join irreducibles.
Irreducibility

Definition

The elements that are their own canonical join representation are the join irreducibles. In finite lattices, they are those covering only one element. Canonical join representations are made of join irreducibles.
The elements that are their own canonical join representation are the join irreducibles. In finite lattices, they are those covering only one element. Canonical join representations are made of join irreducibles.
Irreducibility

Definition

The elements that are their own canonical join representation are the join irreducibles. In finite lattices, they are those covering only one element. Canonical join representations are made of join irreducibles.
Definition

The elements that are their own canonical join representation are the join irreducibles. In finite lattices, they are those covering only one element. Canonical join representations are made of join irreducibles.
Definition

The elements that are their own canonical join representation are the join irreducibles. In finite lattices, they are those covering only one element. Canonical join representations are made of join irreducibles.
Definition

The elements that are their own canonical join representation are the join irreducibles. In finite lattices, they are those covering only one element. Canonical join representations are made of join irreducibles.
Definition

The elements that are their own canonical join representation are the join irreducibles. In finite lattices, they are those covering only one element. Canonical join representations are made of join irreducibles.
Definition

The elements that are their own canonical join representation are the **join irreducibles**. In finite lattices, they are those covering only one element. Canonical join representations are made of join irreducibles.
Proposition (Freese Nation ’95)

\[
cjr(x) = \{ k_\vee(x, y) \mid y \leq x \},
\]

where \(k_\vee(x, y) := \min\{z \leq x, z \not\leq y\} \).
Proposition (Freese Nation ’95)

\[\text{cjr}(x) = \{ k \lor (x, y) \mid y \preceq x \}, \]

where \(k \lor (x, y) := \min\{z \leq x, z \not\preceq y\} \).
Proposition (Freese Nation '95)

\[\text{cjr}(x) = \{ k \vee (x, y) \mid y \preceq x \}, \]

where \(k \vee (x, y) := \min\{ z \leq x, z \nleq y \} \).
Proposition (Freese Nation ’95)

\[\text{cjr}(x) = \{ k_\vee(x, y) \mid y \trianglelefteq x \}, \]

where \(k_\vee(x, y) := \min\{z \leq x, z \not\leq y\} \).
Proposition (Freese Nation ’95)

\[\text{cjr}(x) = \{ k \lor (x, y) \mid y \leq x \}, \]

where \(k \lor (x, y) := \min\{z \leq x, z \not\leq y\} \).

\[k \lor (x, a \lor b) = c. \]
Proposition (Freese Nation’95)

\[\text{cjr}(x) = \{ k_\vee(x, y) \mid y \lessdot x \}, \]

where \(k_\vee(x, y) := \min\{z \leq x, z \not\lessdot y\}. \)
Proposition (Freese Nation ’95)

\[\text{cjr}(x) = \{ k_\vee(x, y) \mid y \leq x \}, \]

where \(k_\vee(x, y) := \min\{z \leq x, z \not\leq y\} \).
Proposition (Freese Nation ’95)

\[\text{cjr}(x) = \{ k \lor (x, y) \mid y \preceq x \}, \]

where \(k \lor (x, y) := \min \{ z \leq x, z \not\leq y \} \).

\[k \lor (x, a \lor b) = c. \]
\[k \lor (x, a \lor c) = b. \]
\[k \lor (x, b \lor c) = a. \]
\[\text{cjr}(x) = \{ a, b, c \}. \]
Definition (Reading ’15, Barnard ’19, ’20)

The \textbf{canonical join complex} associated to a join semidistributive lattice L is the simplicial complex $CJC(L)$ with:

- \textbf{vertices} := \{join irreducibles\},
- \textbf{faces} := \{canonical join representations\}.
Definition (Reading ’15, Barnard ’19, ’20)

The **canonical join complex** associated to a join semidistributive lattice L is the simplicial complex $CJC(L)$ with:
- vertices $\{\text{join irreducibles}\}$,
- faces $\{\text{canonical join representations}\}$.

Theorem (Reading ’15)

It is a flag simplicial complex.
Lattices and canonical join representations

Weak order on permutations and arcs

Canonical complexes

Canonical join complex

The canonical complex of the weak order
Lattices and canonical join representations

Weak order on permutations and arcs

Canonical complexes

Canonical join complex

Lattice L

Canonical join complex $\mathcal{JC}(L)$
Lattices and canonical join representations

Weak order on permutations and arcs

Canonical complexes

Canonical join complex

Lattice L

Canonical join complex $\mathcal{CJC}(L)$
Definition

A lattice congruence is an equivalence relation \equiv on L such that $x \equiv x'$ and $y \equiv y'$ implies $x \lor y \equiv x' \lor y'$ and $x \land y \equiv x' \land y'$.
A lattice congruence is an equivalence relation \equiv on L such that $x \equiv x'$ and $y \equiv y'$ implies $x \lor y \equiv x' \lor y'$ and $x \land y \equiv x' \land y'$. Its classes are intervals of the lattice.
Lattices and canonical join representations

Weak order on permutations and arcs

Canonical complexes

Lattice congruences

Definition

A lattice congruence is an equivalence relation \(\equiv \) on \(L \) such that \(x \equiv x' \) and \(y \equiv y' \) implies \(x \lor y \equiv x' \lor y' \) and \(x \land y \equiv x' \land y' \). Its classes are intervals of the lattice.

The quotient lattice associated to a congruence is the natural lattice on the classes of the congruence.
Definition

A **lattice congruence** is an equivalence relation \equiv on L such that $x \equiv x'$ and $y \equiv y'$ implies $x \lor y \equiv x' \lor y'$ and $x \land y \equiv x' \land y'$. Its classes are intervals of the lattice.

The **quotient lattice** associated to a congruence is the natural lattice on the classes of the congruence.
Definition

A **lattice congruence** is an equivalence relation \equiv on L such that $x \equiv x'$ and $y \equiv y'$ implies $x \lor y \equiv x' \lor y'$ and $x \land y \equiv x' \land y'$. Its classes are intervals of the lattice.

The **quotient lattice** associated to a congruence is the natural lattice on the classes of the congruence.
A lattice congruence is an equivalence relation \(\equiv \) on \(L \) such that \(x \equiv x' \) and \(y \equiv y' \) implies \(x \lor y \equiv x' \lor y' \) and \(x \land y \equiv x' \land y' \). Its classes are intervals of the lattice.

The quotient lattice associated to a congruence is the natural lattice on the classes of the congruence.
Definition

A lattice congruence is an equivalence relation \equiv on L such that $x \equiv x'$ and $y \equiv y'$ implies $x \lor y \equiv x' \lor y'$ and $x \land y \equiv x' \land y'$. Its classes are intervals of the lattice.

The quotient lattice associated to a congruence is the natural lattice on the classes of the congruence.
Definition

A **lattice congruence** is an equivalence relation \equiv on L such that $x \equiv x'$ and $y \equiv y'$ implies $x \lor y \equiv x' \lor y'$ and $x \land y \equiv x' \land y'$. Its classes are intervals of the lattice.

The **quotient lattice** associated to a congruence is the natural lattice on the classes of the congruence.
A lattice congruence is an equivalence relation \(\equiv \) on \(L \) such that \(x \equiv x' \) and \(y \equiv y' \) implies \(x \lor y \equiv x' \lor y' \) and \(x \land y \equiv x' \land y' \). Its classes are intervals of the lattice.

The quotient lattice associated to a congruence is the natural lattice on the classes of the congruence.
Definition

A **lattice congruence** is an equivalence relation \(\equiv \) on \(L \) such that \(x \equiv x' \) and \(y \equiv y' \) implies \(x \lor y \equiv x' \lor y' \) and \(x \land y \equiv x' \land y' \). Its classes are intervals of the lattice. The **quotient lattice** associated to a congruence is the natural lattice on the classes of the congruence.
A lattice congruence is an equivalence relation \(\equiv \) on \(L \) such that \(x \equiv x' \) and \(y \equiv y' \) implies \(x \lor y \equiv x' \lor y' \) and \(x \land y \equiv x' \land y' \). Its classes are intervals of the lattice.

The quotient lattice associated to a congruence is the natural lattice on the classes of the congruence.
Theorem (Reading ’16)

A lattice congruence is characterized by the join irreducibles it contracts (merge with the one they cover). More precisely, there is a poset on join irreducibles called forcing order such that all ideals of this poset correspond to a lattice congruence.
Theorem (Reading ’16)
A lattice congruence is characterized by the join irreducibles it contracts (merge with the one they cover). More precisely, there is a poset on join irreducibles called forcing order such that all ideals of this poset correspond to a lattice congruence.

Theorem (Reading ’15)
The canonical join complex behaves well with lattice congruences.
Lattices and canonical join representations
Weak order on permutations and arcs
Canonical complexes

Lattice congruences

The canonical complex of the weak order

LaBRI (UB) 9 / 29
Lattices and canonical join representations

Weak order on permutations and arcs

Canonical complexes

Lattice congruences

\[\begin{array}{c}
L \\
\mathrel{\lor} \emptyset \\
\mathrel{\lor} b \\
\mathrel{\lor} c \\
\mathrel{\lor} a \\
\mathrel{\lor} d \\
\mathrel{\lor} e \\
\mathrel{\lor} b \lor c \\
\mathrel{\lor} a \lor c \\
\mathrel{\lor} a \lor b \\
\mathrel{\lor} a \\
\end{array} \]

\[CJC(L) \]

Forcing order

Doriann Albertin

The canonical complex of the weak order

LaBRI (UB) 9 / 29
Forcing order

Ideal

\(CJC(L) \)
Lattices and canonical join representations

Weak order on permutations and arcs

Canonical complexes

Lattice congruences

Forcing order

Ideal

Forcing order

\(CJC(L) \)
Lattices and canonical join representations

Weak order on permutations and arcs

Canonical complexes

Lattice congruences

The canonical complex of the weak order

LaBRI (UB) 9 / 29
Lattices and canonical join representations

Weak order on permutations and arcs

Canonical complexes

Lattice congruences

Forcing order

Ideal

Forcing order

CJC(L)

The canonical complex of the weak order
Lattices and canonical join representations

Weak order on permutations and arcs

Canonical complexes

Lattice congruences

The canonical complex of the weak order

LaBRI (UB) 9 / 29
Lattices and canonical join representations

Weak order on permutations and arcs

Canonical complexes

Lattice congruences

Forcing order

Ideal

CJC(L)

Doriann Albertin

The canonical complex of the weak order

LaBRI (UB)
Lattices and canonical join representations

Weak order on permutations and arcs

Canonical complexes

Lattice congruences

Forcing order

Ideal

Forcing order

CJC(L)

CJC(L/≡)

Doriann Albertin

The canonical complex of the weak order

LaBRI (UB)
Weak order on permutations and arcs
Proposition

The (right) weak order is a semidistributive lattice on permutations ordered by containment of their inversion sets.

\[\text{inv}(132) = \{(2, 3)\} \subseteq \{(1, 3), (2, 3)\} = \text{inv}(312) \]

\[132 \preceq 312 \]
A nice bijection

$$\sigma = 526413$$
A nice bijection

\[\sigma = 526413 \]

Permutation table:
\[\{(\sigma_i, i) \mid i \in [n]\} \].
A nice bijection

\[\sigma = 526413 \]

Permutation table:
\[\{ (\sigma_i, i) \mid i \in [n] \} \].
A nice bijection

\[\sigma = 526413 \]

Permutation table:
\[\{ (\sigma_i, i) | i \in [n] \} \].

Theorem (Reading '15)

This is a bijection between permutations and Non-Crossing Arc Diagrams (NCADs).
A nice bijection

\[\sigma = 526413 \]

Permutation table:
\[\{(\sigma_i, i) \mid i \in [n]\} \].
σ = 526413

Permutation table:
\[\{(\sigma_{i}, i) \mid i \in [n]\}\].
\[\sigma = 526413 \]

Permutation table:
\[\{(\sigma_i, i) \mid i \in [n]\}. \]
\[\sigma = 526413 \]

Permutation table:
\[\{(\sigma_i, i) \mid i \in [n]\} \].

Highlight **descents**.
\[\sigma = 526413 \]

Permutation table:
\[\{(\sigma_i, i) \mid i \in [n]\} \].

Highlight **descents**.

Flatten!
A nice bijection

\[\sigma = 526413 \]

Permutation table:
\[\{(\sigma_i, i) \mid i \in [n]\} \].

Highlight **descents**.

Flatten!
A nice bijection

\[\sigma = 526413 \]

Permutation table:
\[\{(\sigma_i, i) \mid i \in [n]\} \].

Highlight *descents*.

Flatten!
A nice bijection

$\sigma = 526413$

Permutation table:
$\{(\sigma_i, i) \mid i \in [n]\}$.

Highlight descents.

Flatten!
A nice bijection

\[\sigma = 526413 \]

Permutation table:
\[\{(\sigma_i, i) \mid i \in [n]\} \]

Highlight **descents**.

Flatten!

Doriann Albertin

The canonical complex of the weak order

LaBRI (UB) 12 / 29
\(\sigma = 526413\)

Permutation table:
\(\{(\sigma_i, i) \mid i \in [n]\}\).

Highlight **descents**.

Flatten !

Theorem (Reading ’15)

This is a bijection between permutations and Non-Crossing Arc Diagrams (NCADs).
A nice bijection

\[\sigma = 526413 \]

Permutation table:
\[\{(\sigma_i, i) \mid i \in [n]\} \].

Highlight *descents*.

Flatten!

Theorem (Reading ’15)

This is a bijection between permutations and Non-Crossing Arc Diagrams (NCADs).
Theorem (Reading ’15)

The bijection between permutations and NCADs provides a combinatorial model for the canonical join representations in the weak order.
The bijection between permutations and NCADs provides a combinatorial model for the canonical join representations in the weak order.
The bijection between permutations and NCADs provides a combinatorial model for the canonical join representations in the weak order.
Theorem (Reading ’15)

The bijection between permutations and NCADs provides a combinatorial model for the canonical join representations in the weak order.
The bijection between permutations and NCADs provides a combinatorial model for the canonical join representations in the weak order.

\[\sigma \leftrightarrow \text{cjr(\(\sigma\))} \]

join irreducible permutations \[\sigma \vee\] single arcs
Theorem (Reading ’15)

The canonical join complex of the weak order is isomorphic to the non-crossing complex.
Theorem (Reading ’15)

The canonical join complex of the weak order is isomorphic to the non-crossing complex.
Theorem (Reading ’15)

The canonical join complex of the weak order is isomorphic to the non-crossing complex.
Proposition (Reading ’15)

The forcing on arcs corresponds to the extension of arcs.
Canonical complexes
And what about meet?

Time well spent

Everything we said has a counterpart in terms of canonical meet representations, canonical meet complexes and NCADs.
Time well spent

Everything we said has a counterpart in terms of canonical meet representations, canonical meet complexes and NCADs.
Time well spent

Everything we said has a counterpart in terms of canonical meet representations, canonical meet complexes and NCADs.
And what about meet?

Time well spent

Everything we said has a counterpart in terms of canonical meet representations, canonical meet complexes and NCADs.
The κ maps

\[
\begin{array}{c}
\begin{array}{c}
c \downarrow \quad b \downarrow \\
\quad \quad a \\
d \downarrow \\
e
\end{array} \\
\end{array}
\]

$\mathcal{JC}(L)$

\[
\begin{array}{c}
\begin{array}{c}
g \uparrow \\
h \uparrow \\
e \uparrow \\
f \uparrow \\
d \uparrow \\
\end{array} \\
\end{array}
\]

$\mathcal{MC}(L)$

Theorem (A., Pilaud '22+)

The κ maps are simplicial complex isomorphism.

For $L = S_n$, the κ maps correspond to changing the color of the arc.
The κ maps

$\mathcal{JC}(L)$

$CMC(L)$

Theorem (A., Pilaud '22+)

The κ maps are simplicial complex isomorphism.

For $L = S_n$, the κ maps correspond to changing the color of the arc.
Theorem (A., Pilaud '22+)

- The κ maps are simplicial complex isomorphism.
- For $L = S_n$, the κ maps correspond to changing the color of the arc.
Definition (A., Pilaud '22+)

Canonical representation of an interval:

\[\text{cr}([x, y]) := \text{cjr}(x) \sqcup \text{cmr}(y). \]

Canonical complex \(CC(L) \) of a semidistributive lattice \(L \):

- vertices := \{join irreducibles\} \sqcup \{meet irreducibles\},
- faces := \(J \sqcup M \) such that:
 - \(J \) is a canonical join representation,
 - \(M \) is a canonical meet representation,
 - \(\bigvee J \leq \bigwedge M \).

So that the faces of the canonical complex \(CC(L) \) are in bijection with the interval of \(L \).
The canonical complex ...

... is a simplicial complex, i.e., one can embed it on the boundary of a simplex.
The canonical complex ...

... is a simplicial complex, i.e., one can embed it on the boundary of a simplex.

... is an octahedral complex, i.e., one can embed it on the boundary of a cross-polytope.
The canonical complex ...

... is a simplicial complex, i.e., one can embed it on the boundary of a simplex.
... is an octahedral complex, i.e., one can embed it on the boundary of a cross-polytope.
... is not pure in general.
The canonical complex ...

... is a simplicial complex, i.e., one can embed it on the boundary of a simplex.

... is an octahedral complex, i.e., one can embed it on the boundary of a cross-polytope.

... is not pure in general.

... is flag.
The canonical complex ...

... is a simplicial complex, *i.e.*, one can embed it on the boundary of a simplex.

... is an *octahedral complex*, *i.e.*, one can embed it on the boundary of a cross-polytope.

... is not pure in general.

... is flag.

Theorem (A., Pilaud ’22+)

The canonical complex behaves as well as the canonical join and meet complexes with respect to taking quotients of the lattice.
The canonical complex ...

... is a simplicial complex, \textit{i.e.}, one can embed it on the boundary of a simplex.

... is an \textit{octahedral complex}, \textit{i.e.}, one can embed it on the boundary of a cross-polytope.

... is not pure in general.

... is flag.

\textbf{Theorem (A., Pilaud '22+)}

\textit{The canonical complex behaves as well as the canonical join and meet complexes with respect to taking quotients of the lattice. The canonical complex of a quotient is the subcomplex of the canonical complex spanned by the uncontracted join or meet irreducibles.}
Back to our example

The canonical complex of the weak order
Back to our example

The canonical complex of the weak order
Back to our example

Doriann Albertin

The canonical complex of the weak order
Back to our example

Lattices and canonical join representations
Weak order on permutations and arcs
Canonical complexes

The canonical complex of the weak order

LaBRI (UB) 21 / 29
Back to our example

The canonical complex of the weak order

LaBRI (UB) 21 / 29
Back to our example

Doriann Albertin
The canonical complex of the weak order
Back to our example
Back to our example

The canonical complex of the weak order

Doriann Albertin
With the interval $[526413, 564231]$, we associate the superimposition of diagrams:
Theorem (A., Pilaud ’22+)

This is a bijection between intervals of the weak order and Semi-Crossing Arc Bidiagrams (SCABs).
Theorem (A., Pilaud '22+)

This is a bijection between intervals of the weak order and Semi-Crossing Arc Bidiagrams (SCABs).
Theorem (A., Pilaud ’22+)

This is a bijection between intervals of the weak order and Semi-Crossing Arc Bidiagrams (SCABs).
Theorem (A., Pilaud '22+)

This bijection between intervals of the weak order and SCABs provides a combinatorial model for the canonical complex of the weak order: the semi-crossing complex.
\[\alpha = (a, b, A, B) = (3, 8, \{6, 7\}, \{4, 5\}) \]
\[\alpha = (a, b, A, B) = (3, 8, \{6, 7\}, \{4, 5\}) \]

Lemma

For any two arcs \(\alpha := (a, b, A, B) \) and \(\alpha' := (a', b', A', B') \), then

1. \(\sigma_\vee(\alpha) \leq \sigma_\vee(\alpha') \) ⇔

2. \(\sigma_\wedge(\alpha) \leq \sigma_\wedge(\alpha') \) ⇔

3. \(\sigma_\vee(\alpha) \leq \sigma_\wedge(\alpha') \) ⇔
Lemma

For any two arcs $\alpha := (a, b, A, B)$ and $\alpha' := (a', b', A', B')$, then

- $\sigma \vee (\alpha) \leq \sigma \vee (\alpha') \iff a \in B' \cup \{a\}$ and $b \in A' \cup \{b\}$, and $A \subseteq A'$ and $B \subseteq B'$,

- $\sigma \wedge (\alpha) \leq \sigma \wedge (\alpha') \iff a' \in B \cup \{a\}$ and $b' \in A \cup \{b\}$, and $A' \subseteq A$ and $B' \subseteq B$,

- $\sigma \vee (\alpha) \leq \sigma \wedge (\alpha') \iff \exists u < v$, $u \in (A' \cup \{a\}) \cap (B \cup \{a\})$ and $v \in (A \cup \{b\}) \cap (B' \cup \{b\})$.

\[
\alpha = (a, b, A, B) = (3, 8, \{6, 7\}, \{4, 5\})
\]
Lemma

For any two arcs $\alpha := (a, b, A, B)$ and $\alpha' := (a', b', A', B')$, then

1. $\sigma_v(\alpha) \leq \sigma_v(\alpha') \iff a \in B' \cup \{a'\}$ and $b \in A' \cup \{b'\}$, and $A \subseteq A'$ and $B \subseteq B'$,

2. $\sigma_\wedge(\alpha) \leq \sigma_\wedge(\alpha') \iff a' \in B \cup \{a\}$ and $b' \in A \cup \{b\}$, and $A' \subseteq A$ and $B' \subseteq B$,

3. $\sigma_v(\alpha) \leq \sigma_\wedge(\alpha') \iff \not \exists u < v$, $u \in (A' \cup \{a'\}) \cap (B \cup \{a\})$ and $v \in (A \cup \{b\}) \cap (B' \cup \{b'\})$.

Where:

$\alpha = (a, b, A, B) = (3, 8, \{6, 7\}, \{4, 5\})$
\[\alpha = (a, b, A, B) = (3, 8, \{6, 7\}, \{4, 5\}) \]

Lemma

For any two arcs \(\alpha := (a, b, A, B) \) and \(\alpha' := (a', b', A', B') \), then

- \(\sigma_\vee(\alpha) \leq \sigma_\vee(\alpha') \iff a \in B' \cup \{a'\} \) and \(b \in A' \cup \{b'\} \), and \(A \subseteq A' \) and \(B \subseteq B' \),

- \(\sigma_\wedge(\alpha) \leq \sigma_\wedge(\alpha') \iff a' \in B \cup \{a\} \) and \(b' \in A \cup \{b\} \), and \(A' \subseteq A \) and \(B' \subseteq B \),

- \(\sigma_\vee(\alpha) \leq \sigma_\wedge(\alpha') \iff \exists u < v, u \in (A' \cup \{a'\}) \cap (B \cup \{a\}) \) and \(v \in (A \cup \{b\}) \cap (B' \cup \{b'\}) \).
\[\alpha = (a, b, A, B) = (3, 8, \{6, 7\}, \{4, 5\}) \]

Lemma

For any two arcs \(\alpha := (a, b, A, B) \) and \(\alpha' := (a', b', A', B') \), then

- \(\sigma \vee (\alpha) \leq \sigma \vee (\alpha') \iff a \in B' \cup \{a'\} \) and \(b \in A' \cup \{b'\} \), and \(A \subseteq A' \) and \(B \subseteq B' \),

- \(\sigma \wedge (\alpha) \leq \sigma \wedge (\alpha') \iff a' \in B \cup \{a\} \) and \(b' \in A \cup \{b\} \), and \(A' \subseteq A \) and \(B' \subseteq B \),

- \(\sigma \vee (\alpha) \leq \sigma \wedge (\alpha') \iff \not\exists u < v, u \in (A' \cup \{a'\}) \cap (B \cup \{a\}) \) and \(v \in (A \cup \{b\}) \cap (B' \cup \{b'\}) \).
\[\alpha = (a, b, A, B) = (3, 8, \{6, 7\}, \{4, 5\}) \]

Lemma

For any two arcs \(\alpha := (a, b, A, B) \) and \(\alpha' := (a', b', A', B') \), then

- \(\sigma_\vee(\alpha) \leq \sigma_\vee(\alpha') \iff a \in B' \cup \{a'\} \) and \(b \in A' \cup \{b'\} \), and \(A \subseteq A' \) and \(B \subseteq B' \),
- \(\sigma_\wedge(\alpha) \leq \sigma_\wedge(\alpha') \iff a' \in B \cup \{a\} \) and \(b' \in A \cup \{b\} \), and \(A' \subseteq A \) and \(B' \subseteq B \),
- \(\sigma_\vee(\alpha) \leq \sigma_\wedge(\alpha') \iff \nexists u < v, u \in (A' \cup \{a'\}) \cap (B \cup \{a\}) \) and \(v \in (A \cup \{b\}) \cap (B' \cup \{b'\}) \).
\(\alpha = (a, b, A, B) = (3, 8, \{6, 7\}, \{4, 5\}) \)

Lemma

For any two arcs \(\alpha := (a, b, A, B) \) and \(\alpha' := (a', b', A', B') \), then

- \(\sigma \vee (\alpha) \leq \sigma \vee (\alpha') \iff a \in B' \cup \{a'\} \) and \(b \in A' \cup \{b'\} \), and \(A \subseteq A' \) and \(B \subseteq B' \),
- \(\sigma \wedge (\alpha) \leq \sigma \wedge (\alpha') \iff a' \in B \cup \{a\} \) and \(b' \in A \cup \{b\} \), and \(A' \subseteq A \) and \(B' \subseteq B \),
- \(\sigma \vee (\alpha) \leq \sigma \wedge (\alpha') \iff \exists u < v, u \in (A' \cup \{a'\}) \cap (B \cup \{a\}) \) and \(v \in (A \cup \{b\}) \cap (B' \cup \{b'\}) \).
\(\alpha = (a, b, A, B) = (3, 8, \{6, 7\}, \{4, 5\}) \)

Lemma

For any two arcs \(\alpha := (a, b, A, B) \) and \(\alpha' := (a', b', A', B') \), then

- \(\sigma \lor (\alpha) \leq \sigma \lor (\alpha') \iff a \in B' \cup \{a'\} \) and \(b \in A' \cup \{b'\} \), and \(A \subseteq A' \) and \(B \subseteq B' \),

- \(\sigma \land (\alpha) \leq \sigma \land (\alpha') \iff a' \in B \cup \{a\} \) and \(b' \in A \cup \{b\} \), and \(A' \subseteq A \) and \(B' \subseteq B \),

- \(\sigma \lor (\alpha) \leq \sigma \land (\alpha') \iff \nexists u < v, u \in (A' \cup \{a'\}) \cap (B \cup \{a\}) \) and \(v \in (A \cup \{b\}) \cap (B' \cup \{b'\}) \).
\[\alpha = (a, b, A, B) = (3, 8, \{6, 7\}, \{4, 5\}) \]

Lemma

For any two arcs \(\alpha := (a, b, A, B) \) and \(\alpha' := (a', b', A', B') \), then

- \(\sigma_\lor(\alpha) \leq \sigma_\lor(\alpha') \iff a \in B' \cup \{a'\} \) and \(b \in A' \cup \{b'\} \), and \(A \subseteq A' \) and \(B \subseteq B' \),

- \(\sigma_\land(\alpha) \leq \sigma_\land(\alpha') \iff a' \in B \cup \{a\} \) and \(b' \in A \cup \{b\} \), and \(A' \subseteq A \) and \(B' \subseteq B \),

- \(\sigma_\lor(\alpha) \leq \sigma_\land(\alpha') \iff \nexists u < v, u \in (A' \cup \{a'\}) \cap (B \cup \{a\}) \) and \(v \in (A \cup \{b\}) \cap (B' \cup \{b'\}) \).
Some SCABs

\[[1234, 4321] \]
[1234, 4321]
[1234, 1234]
Some SCABs

[2314, 2314]
[2413, 4321]
Some SCABs

\[\{2413, 4321\} \]
Some SCABs

\[
[??? , ???]
\]
[1324, 3412]
Some SCABs

\[[2143, 2413]\]
Some SCABs
Algorithm

Given a congruence \equiv of the weak order and the canonical meet representation of the top element of a class, find the canonical join representation of the bottom element of this class.
Algorithm

Given a congruence \equiv of the weak order and the canonical meet representation of the top element of a class, find the canonical join representation of the bottom element of this class.

When \equiv is the sylvester congruence, i.e., when it contracts all arcs but those shaped like \bullet, we recover the classical Kreweras complement on non-crossing partitions:
Algorithm

Given a congruence \equiv of the weak order and the canonical meet representation of the top element of a class, find the canonical join representation of the bottom element of this class.

When \equiv is the sylvester congruence, i.e., when it contracts all arcs but those shaped like $\bullet \rightarrow \bullet$, we recover the classical Kreweras complement on non-crossing partitions:
Geometry (motivation):

- Building a Hopf Algebra on the faces of quotientopes consistent with previous constructions (Chapoton '00, Aguiar Ardila '17, Pilaud '19).
- Given a congruence, what are the SCABs that correspond to a face of the associated quotientope? (solved only for the trivial congruence)
Geometry (motivation):
- Building a Hopf Algebra on the faces of quotientopes consistent with previous constructions (Chapoton ’00, Aguiar Ardila ’17, Pilaud ’19).
- Given a congruence, what are the SCABs that correspond to a face of the associated quotientope? (solved only for the trivial congruence)

Generalizations:
- Can we generalize the canonical complex to the study of k-chains?
• **Geometry (motivation):**
 - Building a Hopf Algebra on the faces of quotientopes consistent with previous constructions (Chapoton ’00, Aguiar Ardila ’17, Pilaud ’19).
 - Given a congruence, what are the SCABs that correspond to a face of the associated quotientope? (solved only for the trivial congruence)

• **Generalizations:**
 - Can we generalize the canonical complex to the study of k-chains?

• **Study of the canonical complex:**
 - What are the symmetries of the canonical complex in general?
 - If we add structure on the lattice, do we get structure on its canonical complex? We studied the distributive case, what about congruence uniformity?
 - What can we guess of the shape of an interval given the shape of its SCAB? (question from Sara Billey)
Thank you!
Take $n = 4$ and \equiv contracting only $\bullet \bullet \bullet$.
• Take \(n = 4 \) and \(\equiv \) contracting only

• We start with the diagram \(\bullet \bullet \bullet \).
Take $n = 4$ and \equiv contracting only $\bullet \bullet \bullet \bullet$.

We start with the diagram $\bullet \bullet \bullet \bullet$.

Take the associated join diagram: $\bullet \bullet \bullet \bullet$.
Take $n = 4$ and \equiv contracting only.

We start with the diagram.

Take the associated join diagram:

Consider all the set of arcs beneath any arc of this diagram in the weak order.
Take \(n = 4 \) and \(\equiv \) contracting only \(\bullet \bullet \bullet \bullet \).

We start with the diagram \(\bullet \bullet \bullet \bullet \).

Take the associated join diagram: \(\bullet \bullet \bullet \bullet \).

Consider all the set of arcs beneath any arc of this diagram in the weak order.

Remove those that are contracted by \(\equiv \).

Remove those that are a fusion of two others.
Take $n = 4$ and \equiv contracting only.

We start with the diagram.

Take the associated join diagram.

Consider all the set of arcs beneath any arc of this diagram in the weak order.

Remove those that are contracted by \equiv.

Remove those that are a fusion of two others.
Take $n = 4$ and \equiv contracting only.

We start with the diagram.

Take the associated join diagram:

Consider all the set of arcs beneath any arc of this diagram in the weak order.

Remove those that are contracted by \equiv.

Remove those that are a fusion of two others.

Take the maximal elements.
Take $n = 4$ and \equiv contracting only.

We start with the diagram.

Take the associated join diagram:

Consider all the set of arcs beneath any arc of this diagram in the weak order.

Remove those that are contracted by \equiv.

Remove those that are a fusion of two others.

Take the maximal elements.

is a SCAB corresponding to a class of \equiv!
Example of Kreweras complement
The canonical complex of the weak order

$$\kappa_{\land}(b) := \max \{x \geq \bigvee \emptyset, x \nleq b\}$$
\[\kappa_{\land}(b) := \max\{x \geq \bigvee \emptyset, x \not\leq b\} \]
Lattices and canonical join representations

Weak order on permutations and arcs

Canonical complexes

\(\kappa \) computations

The canonical complex of the weak order

LaBRI (UB) 32 / 29

\[\kappa_\wedge (b) := \max\{x \geq \bigvee \emptyset, x \nleq b\} \]
\[\kappa_\wedge(b) := \max\{x \geq \bigvee \emptyset, x \not\geq b\} \]
\[\kappa_\wedge(b) := \max\{x \geq \bigvee \emptyset, x \not\geq b\} = h \]
These maps were studied in Barnard '19, extended in Defant-Williams '22.