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Packing P:
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What is a packing?

Discs:

Packing P:
(in R?)

2
Density: — limsup 2reall=n,n"N P)
o(P) h,r,rl,solip area([—n, n]?)
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What is a packi

Discs:

Packing P:
(in R?)

area([—n, n]> N P)
nooo  area([—n, n]?)

Density: 6(P) = limsup

Main Question

Given a finite set of discs (e.g., O®@e ),
which packing maximizes the density?
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Motivation

o Packing fruits C%)

and vegetables -
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Motivation

o Packing fruits
and vegetables

o Making compact
materials

Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods.
Journal of the American Chemical Society, 137(20):6662—-6669, 2015.
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Packing @ in 2D and & in 3D

2D hexagonal ) -packing: 6= 2"\/5
Lagrange, 1772

Hexagonal packing maximizes the density among lattice () -packings. J
Thue, 1910 (Fejes Téth, 1940)

Hexagonal packing maximizes the density. J
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Packing @ in 2D and & in 3D
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Packing @ in 2D and & in 3D

2D hexagonal ) -packing: 6= %
Lagrange, 1772
Hexagonal packing maximizes the density among lattice () -packings. J

Thue, 1910 (Fejes Téth, 1940)
Hexagonal packing maximizes the density. J

3D hexagonal compact @ -packings: %‘@ ¢ { 6= ﬁ
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in 3D

Packing @ in 2D and ¢

2D hexagonal ) -packing: 6= %
Lagrange, 1772
Hexagonal packing maximizes the density among lattice () -packings. J

Thue, 1910 (Fejes Téth, 1940)

Hexagonal packing maximizes the density.

3D hexagonal compact @ -packings:
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Packing @ in 2D and & in 3D

2D hexagonal ) -packing: 6= ﬁ
Lagrange, 1772

Hexagonal packing maximizes the density among lattice () -packings. J
Thue, 1910 (Fejes Téth, 1940)

Hexagonal packing maximizes the density. J
3D hexagonal compact @ -packings: o= ﬁ
Gauss, 1831

Hexagonal compact packings maximize the density among lattice @ -packings. J
Hales, Ferguson, 1998-2014 (Conjectured by Kepler, 1611)
Hexagonal compact packings maximize the density. J
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Packing @ in 2D and @ in 3D

The proof of the Kepler Conjecture

Mathematics as we practice it is much more formally complete
and precise than other sciences, but it is much less formally
complete and precise for its content than computer programs
W. P Thurston 1994

@ 18th problem of the Hilbert's list 1900
o Fejes Téth: local density approach 1953
@ Hsiang: close enough but judged incomplete 1990
o Hales’ program: The Sphere Packing Problem . Comp. App. Math. 1992
@ 6 preprints by Hales and Ferguson ArXiv 1998

> 50000 + 137000 lines of code

@ reviewing: 13 reviewers, 3 years... “99% certain”

6 edited papers Discrete & Computational Geometry 2006

Flyspeck project: formal proof (HOL Light and Isabelle) 2003-2014
Forum of Mathematics, Pi 2017
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Triangulated packings

A packing is called triangulated if each “hole” is bounded by three tangent discs:
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Triangulated packings

A packing is called triangulated if each “hole” is bounded by three tangent discs:

O@ Kennedy, 2006

(Packings by discs of radii 1,r) There are 9 values of r aIIowmg trlangulated packings.

bl
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Triangulated packings

A packing is called triangulated if each “hole” is bounded by three tangent discs:

O@ Kennedy, 2006

(Packings by discs of radii 1,r) There are 9 values of r aIIowmg trlangulated packings.

B

b8

QO@e Fernique, Hashemi, Sizova 2019
(Packings by discs of radii 1,r,s) There are 164 pairs (r, s) allowing triangulated packings.
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Triangulated packings
Even more motivation
triangulated packings tilings by triangles
with local rules

a 9 a4

NAVAVAAY A VATAY
ORISR
¥ ‘»4» A ‘»4&"7 ]

ﬁ’lv w‘ﬁ'iv gﬂﬁ’lv
VAV S YAV.0 S VAV,

/\

density = weighted proportion of tiles
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Triangulated packings

Even more motivation

triangulated packings ~ tilings by triangles
with local rules

AV VA A2 VATAY

':s’é'*gi’é‘%g@’ W

B s % B> < V e <
ORRORSC N £

density = weighted proportion of tiles

Triangulated Packing Problem

excludes hexagonal packing
algebraic numbers represented by polynomials and intervals

Given k disc radii 1, -, rc, is there a triangulated packing of density > T
2V3
Y n,---, r with triangulated packings, one is periodic = decidable
(Wang algorithm: search for a period)
3 n,- -, n whose triangulated packings are all aperiodic = undecidable?
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Triangulated packings

Even more motivation

Dense Packing Problem

excludes hexagonal packing
algebraic numbers represented by polynomials and intervals

Given k disc radii r1,---,rc, is there a packing of density > T
2V3
¥ n,---, r with dense packings, one is periodic = decidable

(interval arithmetic and subdivision until needed precision)

dn,---, r whose dense packings are all aperiodic not possible!
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Triangulated packings
Thue, 1910 (Toth, 1940)

The hexagonal packing maximizes the density. %

Heppes 2000,2003; Kennedy 2004; Bedaride, Fernique, 2019

All these 9 triangulated packings maximize the density.
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Triangulated packings
Thue, 1910 (Toth, 1940)

The hexagonal packing maximizes the density. %

Heppes 2000,2003; Kennedy 2004; Bedaride, Fernique, 2019

bl b2 b3 b4
All these 9 triangulated packings maximize the density.

If a finite set of discs allows a saturated triangulated packing then the density is
maximized on a saturated triangulated packing.

Conjecture (Connelly, 2018)
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Triangulated packings
Thue, 1910 (Toth, 1940)

The hexagonal packing maximizes the density. %

Heppes 2000,2003; Kennedy 2004; Bedaride, Fernique, 2019

If a finite set of discs allows a saturated triangulated packing then the density is
maximized on a saturated triangulated packing.

triangulated non triangulated triangulated non triangulated
saturated saturated non saturated non saturated

bl
All these 9 triangulated packings maximize the density.

Conjecture (Connelly, 2018)
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3 discs: Q
T

164 (r,s) allowing
triangulated packings:
(Fernique, Hashemi, Sizova 2019)

@ 15 cases: non
saturated

@ 40 cases: a binary
non triangulated

packing is denser
(Fernique, P 2022)

@ case 53: a ternary
triangulated packing

is densest
(Fernique 2019)

@ 15415 more cases:
a ternary or binary
triangulated packing
is densest
(Fernique, P 2022)

Daria Pchelina
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\J Y
Qb
>© )

P* of density §* P of density §

Delaunay triangulation

Show that for any saturated packing P,

)
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Proof for @

L/ N

Delaunay triangulation

2 /

P* of density §* P of density §
Show that for any saturated packing P,

)

Voronoi cell of a disc in a packing: set of points closer to this disc than to any other

Voronoi diagram of a packing: partition of the plane into Voronoi cells
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Delaunay triangulation
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Proof for @

Delaunay triangulation

ViraVaraViva >
CARAXAD ,

P* of density §* P of density §

Show that for any saturated packing P,

)

Voronoi cell of a disc in a packing: set of points closer to this disc than to any other

Voronoi diagram of a packing: partition of the plane into Voronoi cells

Delaunay triangulation of a packing: dual graph of the Voronoi diagram
Main property: no points inside the circumscribed circle of any triangle
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Proof for @

o = area(ANP)

Density of a triangle A in a packing = its proportion covered by discs area(B)

VaraVaraVar )
YA
R ‘

5*:5A*:ﬁ VA, (;AS(SA* =4
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Proof for @

area(ANP)

Density of a triangle A in a packing = its proportion covered by discs on = area(A)
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Proof for @

o = area(ANP)

Density of a triangle A in a packing = its proportion covered by discs area(d)

5*:5A*:ﬁ VA, (;AS(SA* =4

o The largest angle of any A is between T and & A< T =R = 2‘55/3 > 57> 2
@ The density of a triangle A: dp = a,:a/(zA)

o The area of a triangle ABC with the largest angle B is 1|AB|:|BC|-sin B which is at
least %~2~2-§ =3

@ Thus the density of ABC is less or equal to 7'7/52 = da=
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Proof for @

Triangles in P* have different densities:

(68)(®)

Hopeless to bound the density in each triangle...
What to do?

FM-triangulation of packing P*
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Proof for @

Triangles in P* have different densities:

(68)(®)

Hopeless to bound the density in each triangle...
What to do?

FM-triangulation of packing P*

Density redistribution:

Dense triangles “share their density” with neighbors
Density of sphere packings



Proof for @

Emptiness instead of density

?
(" /¢
‘ NORSE
saturated triangulated packing P~ saturated packing P with the same discs
density 6*, FM-triangulation T* density §, FM-triangulation T
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Proof for @

Emptiness instead of density

?
(" /¢
‘ SRS
saturated triangulated packing P~ saturated packing P with the same discs
density 6*, FM-triangulation T* density §, FM-triangulation T

Density function is not additive: § < @) +4 (C&) #90 ( @) —
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Proof for @

Emptiness instead of density

?
(" /¢
‘ NORSE
saturated triangulated packing P~ saturated packing P with the same discs
density 6*, FM-triangulation T* density §, FM-triangulation T

Density function is not additive: § ( @) +4 (C&) #90 ( @) —

Emptiness of a triangle A € T: E(A) = 0" X area(A) — area(A N P)

E(A) > 0 iff the density of A is less than §~
E(A) < 0 iff the density of A is greater than ¢*

Additive!
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Proof for @

Emptiness instead of density

?
(" /¢
‘ NORSE
saturated triangulated packing P~ saturated packing P with the same discs
density 6*, FM-triangulation T* density §, FM-triangulation T

l

Density function is not additive: § ( @) +4 (C&) #90 ( @)

Emptiness of a triangle A € T: E(A) = 0" X area(A) — area(A N P)

E(A) > 0 iff the density of A is less than §~
E(A) < 0 iff the density of A is greater than ¢*

Additive!
ES
0 >0 & E E(A
AeT
Density of sphere packings



Proof for @

Redistribution: potential (inspired by Kennedy 2005)

vertices

We construct a potential U(A) = UA + US + US such that

Y triangle AeT, U(A) < E(A) (A)
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Proof for @

Redistribution: potential (inspired by Kennedy 2005)

vertices

We construct a potential U(A) = UA + US + US such that

V triangle AT, U(A) < E(A) (A)

V vertex veT, Z UL >0 (o)

AcC,

v-corona C,
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Proof for @

Redistribution: potential (inspired by Kennedy 2005)

vertices

We construct a potential U(A) = UA + US + US such that

Y triangle AeT, U(A) < E(A) (A)

V vertex veT, Z UL>0 (o) = Z ua)>o

AcCy AeT
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Proof for @

Redistribution: potential (inspired by Kennedy 2005)

vertices

We construct a potential U(A) = UA + US + US such that

Y triangle AeT, U(A) < E(A) (A)

= > E(A)>0=0">5
Y vertex veT, Z UL>0 (o) = Z u(a) >0 AST

AcCy AeT

v-corona C,
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Proof for @

Redistribution: potential (inspired by Kennedy 2005)

vertices

We construct a potential U(A) = UA + US + US such that

Y triangle AeT, U(A) < E(A) (A)

= > E(A)>0=0">5
Y vertex veT, Z UL>0 (o) = Z u(a) >0 AST

AcCy AeT

If such U exists then 6 > ¢

How to construct it and prove (A), (o) ?

v-corona C,
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Proof for @

Choosing U to assure (o) (inspired by Kennedy 2005)
; : ) : - A, A,
Ayyz tight triangle: tangent discs of radii x,y, z A,
Xyz angle of A,y in the center of the y-disc
Viyz potential of A,y in the center of the y-disc A&A A@
15& 1rs
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Proof for @

Choosing U to assure (o) (inspired by Kennedy 2005)

Ay, tight triangle: tangent discs of radii x, y, z
Xyz angle of A,y in the center of the y-disc
Viyz potential of A,y, in the center of the y-disc

otential of a triangle A in v:
P 8 Vis +m|0-1r3]

Ux = Vi + m|0 — xyz|

measures how “far” A is from being tight

Daria Pchelina
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Proof for @

Choosing U to assure (o) (inspired by Kennedy 2005)

potential of a triangle A in v:

Uk = Viyz + m|0 — 52|

measures how “far” A is from being tight

Choose m to satisfy Z UZ > Z Vigz + m x |27 — Z xyz| > 0 for all coronas C,

AcC, L XYHZ XY,z
disc radii of disc radii of
AeC, AeCy
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Proof for @

Choosing U to assure (o) (inspired by Kennedy 2005)

Choose m to satisfy Z UZ > Z Vigz + m x |27 — Z xyz| > 0 for all coronas C,

AEC, X,¥,Z X,¥,Z
disc radii of disc radii of
AeC, AeCy
angle values do not matter = sequence of disc radii S(C,)
FM-triangulation = bounded |S(C,)]

finite number of linear inequalities on m
= computer search
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Proof for @
(A)

Defining U, we make it as small as possible keeping it positive around any vertrex ()

(A): How to check E(A) > U(A) on each triangle A? (there is a continuum of them)
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Proof for @

(2)

Defining U, we make it as small as possible keeping it positive around any vertrex (e)

(A): How to check E(A) > U(A) on each triangle A? (there is a continuum of them)

FM-triangulation properties + saturation = uniform bound on edge length

PO (Ve

rt+rnn<c<r+rn+2s
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Proof for @

(2)

Defining U, we make it as small as possible keeping it positive around any vertrex (e)

(A): How to check E(A) > U(A) on each triangle A? (there is a continuum of them)

FM-triangulation properties + saturation = uniform bound on edge length

PO (Ve

rt+rnn<c<r+rn+2s

interval arithmetic
verify E(A,b.c) > U(Asb,c) where
a = [re+rp, retre+2s] b = [ratre, rat-re4-2s] ¢ = [ratrp, ratrp+25]

not precise enough (intervals intersect) — dichotomy
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Proof for @

Inequalities and interval arithmetic

A representation of a number x is an interval | whose endpoints are exact values
representable in a computer memory and such that x € /.

sage: x = RIF(0,1) # Interval [0,1]
sage: x<2

True # Vtelo,1],t <2
sage: (x+x).endpoints()

(0.0, 2.0) # [0,1]+[0,1]
sage: Ipi = 4*arctan(RIF(1))

(3.14159265358979, 3.14159265358980) # Interval for m
sage: sin(Ipi) .endpoints()

(-3.21624529935328e-16, 1.22464679914736e-16) # Interval for sin(m)
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Proof for @

Inequalities and interval arithmetic

A representation of a number x is an interval | whose endpoints are exact values
representable in a computer memory and such that x € /.

sage: x = RIF(0,1) # Interval [0,1]
sage: x<2

True # Vtelo,1],t <2
sage: (x+x).endpoints()

(0.0, 2.0) # [0,1]+[0,1]
sage: Ipi = 4*arctan(RIF(1))

(3.14159265358979, 3.14159265358980) # Interval for m
sage: sin(Ipi) .endpoints()

(-3.21624529935328e-16, 1.22464679914736e-16) # Interval for sin(m)

Two intersecting intervals are incomparable:

sage: sin(Ipi)<=x

False

sage: sin(Ipi)>=x

False # These intervals intersect
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Proof f

Our proof worked for these cases:
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Proof for @

And these:

£
33
rx
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Proof strategies for @, @ and ¢

Steps of the proof

0" denotes the maximal density

C|Oo-

@@ partition space into “small” cells FM-triangulation

C|Oo-

@@ find a suitable function to represent the density emptiness E
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Proof strategies for @, @ and ¢

Steps of the proof

0" denotes the maximal density

©|oe:|@ @ partition space into “small” cells FM-triangulation
o|oe:|@@ find a suitable function to represent the density emptiness E
oe|@ @ distribute the density among the vertices in each cell potential U
oo:|@ @ verify that the redistributed density < §* (o) choice of min U
check all possible local configurations run through all coronas

Oe:|@ @ treat special cases which can not be treated by this technique e-triangles
which are usually configurations close to local maxima coronas of T
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Proof strategies for @, @ and ¢

Steps of the proof

0" denotes the maximal density

©|oe:|@ @ partition space into “small” cells FM-triangulation
o|oe:|@@ find a suitable function to represent the density emptiness E
oe|@ @ distribute the density among the vertices in each cell potential U
oo:|@ @ verify that the redistributed density < §* (o) choice of min U
check all possible local configurations run through all coronas

Oe:|@ @ treat special cases which can not be treated by this technique e-triangles
which are usually configurations close to local maxima coronas of T

o=@ verify that the sum of vertex densities in a cell > its density  interval arithmetic
check all possible cells
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Proof strategies for @, @ and ¢

Space partition

2D, O 2D, Qoo 3D, @
Delaunay FM-triangulation 7 Voronoi cells + Delaunay simplices
triangulation (weighted Delaunay triangulation)

HF-partition P

consists of several types of simplices and

modified Voronoi cells
(Sphere packings Il. A formulation of the Kepler Conjecture)

only Voronoi cells or
only Delaunay simplices

4

local configurations denser than §*

regular dodecahedron for Voronoi cells
(as in dodecahedral conjecture)

Hales and McLaughlin 1998
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Proof strategies for @, @ and ¢

Space partition

2D, O 2D, Qoo 3D, @
Delaunay FM-triangulation 7 Voronoi cells + Delaunay simplices
triangulation (weighted Delaunay triangulation)

HF-partition P

consists of several types of simplices and

modified Voronoi cells
(Sphere packings Il. A formulation of the Kepler Conjecture)

only Voronoi cells or
only Delaunay simplices

4

local configurations denser than §*

pentagonal prism for Delaunay simplices

Ferguson 2006
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Proof strategies for @, @ and ¢

Suitable function to measure the density

2D, O 2D, Qoe 3D, @
density  emptiness compression
)

E(A) := 0" xarea(A)—area(ANP) T(R):= vol(RN P) — doct x vol(R)
doct := O(tight regular octahedron) < §*

* _ Otet Soct
573+23
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Proof strategies for @, @ and ¢

Suitable function to measure the density

2D, O 2D, Qoe 3D, @
density  emptiness compression
)

E(A) := 0" xarea(A)—area(ANP) T(R):= vol(RN P) — doct x vol(R)
doct := O(tight regular octahedron) < §*

* _ Otet Soct
573+23

An additive function reflecting the density:
I'(R) < 0 iff the density of R is less than doct
I'(R) > 0 iff the density of R is greater than doct

§ < 46" <« Tis “low enough” on each small region
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Proof strategies for @, @ and ¢

Redistribution of emptiness and compression

2D, Q@e 3D, @

vertex potential score

for AeT,veA, for Re P,v €ER,

UR = Viyz + m X |0 — Uy (R, v) depends on the type of R
where x, y, z are disc radii of A if R is a Voronoi cell of v (R = Vor(v)),
 is the angle of A in v then o(R, v) = 4T(R)

and Vi, m, ¥y, are constants and o(R,w) =0 for w # v

if R is a simplex, o varies in function of its prop-
erties and depends on I
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Proof strategies for @, @ and ¢

Redistribution of emptiness and compression

2D, Q@e 3D, @

vertex potential score

for AeT,veA, for Re P,v €ER,

UR = Viyz + m X |0 — Uy (R, v) depends on the type of R
where x, y, z are disc radii of A if R is a Voronoi cell of v (R = Vor(v)),
 is the angle of A in v then o(R, v) = 4T(R)

and Vi, m, ¥y, are constants and o(R,w) =0 for w # v

if R is a simplex, o varies in function of its prop-
erties and depends on I

U(A) = UA + UR + US < E(D) ;”(R’ v) = 4r(R)

i.e. U is easy to manipulate and is i.e. score of a region always equals to
at most E (lower approximation) 4 x compression

(Sphere packings Il. A formulation of the Kepler Conjecture)
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Proof strategies for @, @ and ¢

Verify that redistribution < §* around each vertex

2D, Qoe 3D, @

foreachvGT,ZUZEO for each v € P, Z (R,v) < 8pt
nec, RED,

configuration around a vertex — configuration around a vertex —

corona C decomposition star D

combinatorial representation of C — combinatorial representation of D —

sequence of disc radii S(C) graph G(D)
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Proof strategies for @, @ and ¢

Verify that redistribution < §* around each vertex

2D, Qoe 3D, @

choose m to satisfy conditions on geometry of D “easily” implying

Z Vigz +m x |27 — Z xyz| >0 o(D) < 8pt (interval arithmetics)

X,¥,Z X,¥,Z (Sphere packings IV. Detailed bounds)
disc radii of disc radii of

AecC AecC

tame graphs — 25 000 graphs of the remaining
for all coronas C D have restricted geometry = maxo(D) < 8pt

(linear programming)
FM-triangulation = bounded |S(C)|

= finite number of inequalities on m
=> computer search

(Sphere packings VI. Tame graphs and linear programs)
except pentagonal prism graph,
(Sphere packing V. Pentahedral prisms)
FCC graph and HCP graph

(Sphere packings Ill. Extremal cases)
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Proof strategies for and ¢

Extremal cases

2D, Q@e 3D, @

FCC HCP

for the coronas of T, Z Viyz =0

XYz
disc radii of
Ag€y-corona

for tight triangles, U(Ayy;) := E(Axyz)

FCC and HCP decomposition stars have
e-triangles — triangles close to tight maximal score

= potential close to emptiness = close configurations have high score
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Proof strategies for

Extremal cases

2D, Q@e

for the coronas of T, Z Viyz =0

XYz
disc radii of
Ag€y-corona

for tight triangles, U(Ayy;) := E(Axyz)

e-triangles — triangles close to tight
= potential close to emptiness

derivatives on side lengths x;:

U
min AXx; > max Ax;
Te 6Xi '= Te aXi '

(interval arithmetic)

Daria Pchelina

Density of sphere packings

and ¢

3D, @

FCC HCP

FCC and HCP decomposition stars have
maximal score
= close configurations have high score

derivatives to prove that FCC and HCP are
local maxima
(Sphere packings Ill. Extremal cases)
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Work in progress: @ ¢

Locally halite packing

triangulated — simplicial
(contact graph is a pure simplicial 3-complex) J

halite packing is formed by a close-packing of unit
spheres where all octahedral holes are filled with
spheres of radius v/2—1

Fernique, 2019 J

The only simplicial packings by two sizes of spheres in 3D are halite packings.
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Work in progress: @ ¢

Locally halite packing

triangulated — simplicial
(contact graph is a pure simplicial 3-complex) J

halite packing is formed by a close-packing of unit
spheres where all octahedral holes are filled with
spheres of radius v/2—1

Fernique, 2019 J

The only simplicial packings by two sizes of spheres in 3D are halite packings.

Conjecture
Halite packings maximize the density. J

@ simplicial partition
@ vertex or edge potential?

@ sphere triangulations or necklaces?

@ bound density inside a tetrahedron (dimension reduction+derivatives)
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Work in progress: @ ¢

Thank you for your attention! :-)
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How to find triangulated packings

A packing is triangulated Each disc has a “corona”

2w
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How to find triangulated packings

A packing is triangulated Each disc has a “corona”

2w

To find disc sizes with triangulated packings, we run trough all possible combinations of
symbolic coronas of two discs (finite number)

Symbolic corona

r 1

(Fernique, Hashemi, Sizova 2019)
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How to find triangulated packings

A packing is triangulated Each disc has a “corona”

2w

To find disc sizes with triangulated packings, we run trough all possible combinations of
symbolic coronas of two discs (finite number)

Symbolic corona Value of r
r 1 — —
6x1lr4+1xrlr =27
r 1 r
~ 0.63
1 1 r=0.
r

(Fernique, Hashemi, Sizova 2019)
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Edge Potentials

Stretched triangles feature low emptiness but high vertex potential:
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Edge Potentials

Stretched triangles feature low emptiness but high vertex potential:

Their neighbors feature high emptiness, so we can “balance” potential between them.
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Edge Potentials

Stretched triangles feature low emptiness but high vertex potential:

B
Y,

Their neighbors feature high emptiness, so we can “balance” potential between them.

To do this, we introduce edge potential: U(A) := Up + Uy
Oa = 05 + 03 + 0

—e qgde if le| > 1
UA = .
0 otherwise
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40 counter examples

bl

A
b3 b4 b7 b8 b9

When the ratio of two discs is close enough to the ratio in a dense binary packing, we
can pack these disc in a similar manner (non triangulated) and still get high density

Examples:
triangulated counter example triangulated counter example triangulated counter example
ternary packing using only 2 discs ternary packing using only 2 discs ternary packing using only 2 discs

i

63 6=0.914301 s=0.337336 6=0.917953 s=0.337336

6=0.921134 5=0.268266

A A ~
6=0.926300 s=0.268266 20 6=0.931369 s=0.121445 =i

97 6=0.931017 s=0.175341 6=0.932390 s=0.175341 47 6=0.915670 s=0.386662 6=0.919703 5=0.386662 111 6=0.914148 s=0.409604 6=0.917188 s=0.409604
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