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What is a packing?

Discs:

Packing P:
(in R2)

Density:

1 r s

δ(P) = lim sup
n→∞

area([−n, n]2 ∩ P)

area([−n, n]2)

Main Question

Given a finite set of discs (e.g., ),

which packing maximizes the density?
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What is a packing?

Motivation

Packing fruits
and vegetables

Making compact
materials

Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods.
Journal of the American Chemical Society, 137(20):6662–6669, 2015.
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Packing in 2D and in 3D

2D hexagonal -packing: δ = π

2
√

3

Lagrange, 1772

Hexagonal packing maximizes the density among lattice -packings.

Thue, 1910 (Fejes Tóth, 1940)

Hexagonal packing maximizes the density.

3D hexagonal compact -packings: δ = π

3
√

2

Gauss, 1831

Hexagonal compact packings maximize the density among lattice -packings.

Hales, Ferguson, 1998–2014 (Conjectured by Kepler, 1611)

Hexagonal compact packings maximize the density.
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Packing in 2D and in 3D

The proof of the Kepler Conjecture

Mathematics as we practice it is much more formally complete
and precise than other sciences, but it is much less formally

complete and precise for its content than computer programs
W. P Thurston 1994

18th problem of the Hilbert’s list 1900

Fejes Tóth: local density approach 1953

Hsiang: close enough but judged incomplete 1990

Hales’ program: The Sphere Packing Problem . Comp. App. Math. 1992

6 preprints by Hales and Ferguson ArXiv 1998
> 50000 + 137000 lines of code

reviewing: 13 reviewers, 3 years... “99% certain”

6 edited papers Discrete & Computational Geometry 2006

Flyspeck project: formal proof (HOL Light and Isabelle) 2003–2014
Forum of Mathematics, Pi 2017
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Triangulated packings

A packing is called triangulated if each “hole” is bounded by three tangent discs:

Kennedy, 2006

(Packings by discs of radii 1,r) There are 9 values of r allowing triangulated packings.

b1                   b2                   b3                   b4                   b5                   b6                   b7                   b8                   b9

Fernique, Hashemi, Sizova 2019

(Packings by discs of radii 1,r,s) There are 164 pairs (r , s) allowing triangulated packings.

...
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Triangulated packings

Even more motivation

triangulated packings ∼ tilings by triangles
with local rules

density = weighted proportion of tiles

Packing Problem

Given k disc radii

algebraic numbers represented by polynomials and intervals︷ ︸︸ ︷
r1, · · · , rk ,

triangulated

packing

∀ r1, · · · , rk with packings, one is periodic ⇒ decidable

∃ r1, · · · , rk whose packings are all aperiodic ⇒
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excludes hexagonal packing︷ ︸︸ ︷
>

π

2
√

3

∀ r1, · · · , rk with triangulated packings, one is periodic ⇒ decidable

(Wang algorithm: search for a period)

∃ r1, · · · , rk whose triangulated packings are all aperiodic ⇒ undecidable?
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Triangulated packings

Even more motivation

triangulated packings ∼ tilings by triangles
with local rules

density = weighted proportion of tiles

Dense Packing Problem

Given k disc radii

algebraic numbers represented by polynomials and intervals︷ ︸︸ ︷
r1, · · · , rk , is there a

triangulated

packing of density

excludes hexagonal packing︷ ︸︸ ︷
>

π

2
√

3

∀ r1, · · · , rk with dense packings, one is periodic ⇒ decidable

(interval arithmetic and subdivision until needed precision)

∃ r1, · · · , rk whose dense packings are all aperiodic ⇒ not possible!
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Triangulated packings

Thue, 1910 (Toth, 1940)

The hexagonal packing maximizes the density.

Heppes 2000,2003; Kennedy 2004; Bedaride, Fernique, 2019

b1                   b2                   b3                   b4                   b5                   b6                   b7                   b8                   b9
All these 9 triangulated packings maximize the density.

Conjecture (Connelly, 2018)

If a finite set of discs allows a saturated triangulated packing then the density is
maximized on a saturated triangulated packing.

triangulated
saturated

non triangulated
saturated

triangulated
non saturated

non triangulated
non saturated
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Triangulated packings

3 discs:

1 r s

164 (r , s) allowing
triangulated packings:
(Fernique, Hashemi, Sizova 2019)

15 cases: non
saturated

40 cases: a binary
non triangulated
packing is denser
(Fernique, P 2022)

case 53: a ternary
triangulated packing
is densest
(Fernique 2019)

15+15 more cases:
a ternary or binary
triangulated packing
is densest
(Fernique, P 2022)
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Proof for

Delaunay triangulation

P∗ of density δ∗ P of density δ

Show that for any saturated packing P,

δ∗ ≥ δ

Voronoi cell of a disc in a packing: set of points closer to this disc than to any other

Voronoi diagram of a packing: partition of the plane into Voronoi cells

Delaunay triangulation of a packing: dual graph of the Voronoi diagram

Main property: no points inside the circumscribed circle of any triangle
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Proof for

Density of a triangle ∆ in a packing = its proportion covered by discs δ∆ = area(∆∩P)
area(∆)

δ∗ = δ∆∗ = π

2
√

3 ∀∆, δ∆ ≤ δ∆∗ = δ∗

A

B

C
>
3
_2π

The largest angle of any ∆ is between π
3

and 2π
3

Â < π
6
⇒ R = |BC |

2 sin Â
≥ 1

sin Â
> 2

The density of a triangle ∆: δ∆ = π/2
area(∆)

The area of a triangle ABC with the largest angle B̂ is 1
2
|AB|·|BC |· sin B̂ which is at

least 1
2
·2·2·

√
3

2
=
√

3

Thus the density of ABC is less or equal to π/2√
3

= δ∆∗
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Proof for

FM-triangulation of packing P∗

Triangles in P∗ have different densities:

δ

(
)
)
6= δ

( )
Hopeless to bound the density in each triangle...

What to do?

Density redistribution:

Dense triangles “share their density” with neighbors
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Proof for

Emptiness instead of density

saturated triangulated packing P∗

density δ∗, FM-triangulation T ∗
saturated packing P with the same discs
density δ, FM-triangulation T

Density function is not additive: δ

( )
+ δ

( )
6= δ

( )
−→

Emptiness of a triangle ∆ ∈ T : E(∆) = δ∗ × area(∆)− area(∆ ∩ P)

E(∆) > 0 iff the density of ∆ is less than δ∗

E(∆) < 0 iff the density of ∆ is greater than δ∗

Additive!

δ∗ ≥ δ ⇔
∑
∆∈T

E (∆) ≥ 0
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Proof for

Redistribution: potential (inspired by Kennedy 2005)

We construct a potential U(∆) :=

vertices︷ ︸︸ ︷
U̇A

∆ + U̇B
∆ + U̇C

∆ such that

∀ triangle ∆∈T , U(∆) ≤ E(∆) (∆)

∀ vertex v∈T ,
∑

∆∈Cv

U̇v
∆ ≥ 0 (•)

v∆1
∆5

∆4

∆3

∆2

v -corona Cv

If such U exists then δ∗ ≥ δ

How to construct it and prove (∆), (•) ?
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Proof for

Choosing U to assure (•) (inspired by Kennedy 2005)

∆xyz tight triangle: tangent discs of radii x , y , z
x̂yz angle of ∆xyz in the center of the y -disc
Vxyz potential of ∆xyz in the center of the y -disc

potential of a triangle ∆ in v :

U̇v
∆ := Vxyz + m|v̂ − x̂yz |

measures how “far” ∆ is from being tight

∆1rs
∆1s1∆111

∆s1s

∆rsr

∆sss

∆srs

∆1r1 ∆1rr ∆rrr

Choose m to satisfy

∑
∆∈Cv

U̇v
∆ ≥

∑
x,y,z

disc radii of
∆∈Cv

Vxyz + m × |2π −
∑
x,y,z

disc radii of
∆∈Cv

x̂yz | ≥ 0 for all coronas Cv

angle values do not matter ⇒ sequence of disc radii S(Cv )

FM-triangulation ⇒ bounded |S(Cv )|

finite number of linear inequalities on m
⇒ computer search
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Proof for

(∆)

Defining U, we make it as small as possible keeping it positive around any vertrex (•)

(∆): How to check E(∆) ≥ U(∆) on each triangle ∆? (there is a continuum of them)

FM-triangulation properties + saturation ⇒ uniform bound on edge length

r ra          b r     s  sa                          br

ra + rb ≤ c ≤ ra + rb + 2s

interval arithmetic

verify E(∆a,b,c) ≥ U(∆a,b,c) where

a = [rc+rb, rc+rb+2s] b = [ra+rc , ra+rc+2s] c = [ra+rb, ra+rb+2s]

not precise enough (intervals intersect) → dichotomy
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Proof for

Inequalities and interval arithmetic

A representation of a number x is an interval I whose endpoints are exact values
representable in a computer memory and such that x ∈ I .

sage: x = RIF(0,1) # Interval [0,1]

sage: x<2

True # ∀t ∈[0,1], t < 2
sage: (x+x).endpoints()

(0.0, 2.0) # [0,1]+[0,1]

sage: Ipi = 4*arctan(RIF(1))

(3.14159265358979, 3.14159265358980) # Interval for π
sage: sin(Ipi).endpoints()

(-3.21624529935328e-16, 1.22464679914736e-16) # Interval for sin(π)

Two intersecting intervals are incomparable:

sage: sin(Ipi)<=x

False

sage: sin(Ipi)>=x

False # These intervals intersect
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Proof for

Our proof worked for these cases:

53                               54                              55                               56                

93                              108                             115                             116               

66                              76                               77                               79

118                            129                             131                             146 
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Proof for

And these:

1                             2                              3                             4                            5   

10                           11                          12                           13                           14                           15            

8

6 4

7                           8                          9 7

9
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Proof strategies for , and

Steps of the proof

δ∗ denotes the maximal density

1| | partition space into “small” cells FM-triangulation

2| | find a suitable function to represent the density emptiness E

3| distribute the density among the vertices in each cell potential U̇

4| verify that the redistributed density ≤ δ∗ (•) choice of m in U̇
check all possible local configurations run through all coronas

5| treat special cases which can not be treated by this technique ε-triangles
which are usually configurations close to local maxima coronas of T ∗

6 verify that the sum of vertex densities in a cell ≥ its density interval arithmetic
check all possible cells
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Proof strategies for , and

Space partition

2D, 2D, 3D,

Delaunay
triangulation

FM-triangulation T
(weighted Delaunay triangulation)

Voronoi cells + Delaunay simplices︸ ︷︷ ︸
HF-partition P

consists of several types of simplices and
modified Voronoi cells
(Sphere packings II. A formulation of the Kepler Conjecture)

only Voronoi cells or
only Delaunay simplices
⇓
local configurations denser than δ∗

regular dodecahedron for Voronoi cells
(as in dodecahedral conjecture)

Hales and McLaughlin 1998
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Space partition

2D, 2D, 3D,

Delaunay
triangulation

FM-triangulation T
(weighted Delaunay triangulation)

Voronoi cells + Delaunay simplices︸ ︷︷ ︸
HF-partition P

consists of several types of simplices and
modified Voronoi cells
(Sphere packings II. A formulation of the Kepler Conjecture)

only Voronoi cells or
only Delaunay simplices
⇓
local configurations denser than δ∗

pentagonal prism for Delaunay simplices

Ferguson 2006
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Proof strategies for , and

Suitable function to measure the density

2D, 2D, 3D,

density
δ

emptiness

E(∆) := δ∗×area(∆)−area(∆ ∩ P)

compression

Γ(R) := vol(R ∩ P)− δoct × vol(R)

δoct := δ(tight regular octahedron) < δ∗

δ∗ = δtet
3

+ 2 δoct
3

An additive function reflecting the density:

Γ(R) < 0 iff the density of R is less than δoct

Γ(R) > 0 iff the density of R is greater than δoct

δ ≤ δ∗ ⇐ Γ is “low enough” on each small region
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Proof strategies for , and

Redistribution of emptiness and compression

2D, 3D,

vertex potential score

for ∆ ∈ T , v ∈ ∆,
U̇v

∆ = Vxyz + m × |v̂ − v̂xyz |

where x , y , z are disc radii of ∆
v̂ is the angle of ∆ in v
and Vxyz ,m, v̂xyz are constants

for R ∈ P, v ∈ R,
σ(R, v) depends on the type of R

if R is a Voronoi cell of v (R = Vor(v)),
then σ(R, v) = 4Γ(R)
and σ(R,w) = 0 for w 6= v

if R is a simplex, σ varies in function of its prop-
erties and depends on Γ

U(∆) = UA
∆ + UB

∆ + UC
∆ ≤ E(∆)

∑
v∈R

σ(R, v) = 4Γ(R)

i.e. U is easy to manipulate and is
at most E (lower approximation)

i.e. score of a region always equals to
4×compression

(Sphere packings II. A formulation of the Kepler Conjecture)
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Proof strategies for , and

Verify that redistribution ≤ δ∗ around each vertex

2D, 3D,

for each v ∈ T ,
∑

∆∈Cv

U̇v
∆ ≥ 0

configuration around a vertex –
corona C

combinatorial representation of C –
sequence of disc radii S(C)

choose m to satisfy∑
x,y,z

disc radii of
∆∈C

Vxyz + m × |2π −
∑
x,y,z

disc radii of
∆∈C

x̂yz | ≥ 0

for all coronas C

FM-triangulation ⇒ bounded |S(C)|
⇒ finite number of inequalities on m
⇒ computer search

(linear programming)

for each v ∈ P,
∑
R∈Dv

σ(R, v) ≤ 8pt

configuration around a vertex –
decomposition star D

combinatorial representation of D –
graph G(D)

conditions on geometry of D “easily” implying
σ(D) ≤ 8pt (interval arithmetics)

(Sphere packings IV. Detailed bounds)

tame graphs – 25 000 graphs of the remaining
D have restricted geometry ⇒ maxσ(D) ≤ 8pt
(linear programming)

(Sphere packings VI. Tame graphs and linear programs)

except pentagonal prism graph,
(Sphere packing V. Pentahedral prisms)

FCC graph and HCP graph
(Sphere packings III. Extremal cases)
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Proof strategies for , and

Extremal cases

2D, 3D,

for the coronas of T ∗,
∑
x,y,z

disc radii of
∆∈y -corona

Vxyz := 0

for tight triangles, U(∆xyz) := E(∆xyz)

ε-triangles – triangles close to tight
⇒ potential close to emptiness

FCC                                    HCP

FCC and HCP decomposition stars have
maximal score
⇒ close configurations have high score

derivatives on side lengths xi :

min
Tε

∂E

∂xi
∆xi ≥ max

Tε

∂U

∂xi
∆xi

(interval arithmetic)

derivatives to prove that FCC and HCP are
local maxima

(Sphere packings III. Extremal cases)
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Work in progress:

Locally halite packing

triangulated → simplicial
(contact graph is a pure simplicial 3-complex)

halite packing is formed by a close-packing of unit
spheres where all octahedral holes are filled with
spheres of radius

√
2−1

Fernique, 2019

The only simplicial packings by two sizes of spheres in 3D are halite packings.

Conjecture

Halite packings maximize the density.

simplicial partition

vertex or edge potential?

sphere triangulations or necklaces?

bound density inside a tetrahedron (dimension reduction+derivatives)
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Work in progress:

Thank you for your attention! :-)

Daria Pchelina Density of sphere packings 20/3/23 28 / 28



How to find triangulated packings

A packing is triangulated ⇐⇒ Each disc has a “corona”

To find disc sizes with triangulated packings, we run trough all possible combinations of
symbolic coronas of two discs (finite number)

Symbolic corona

r
r

r

r1
1

1

1

−→
r

r

r

r1
1

1

1

r+1
r+
1

r+
1

r+1
r+1

r+
1

2r

r+
12

Value of r

6× 1̂1r + 1× r̂1r = 2π

r ≈ 0.63

(Fernique, Hashemi, Sizova 2019)
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Edge Potentials

Stretched triangles feature low emptiness but high vertex potential:

Their neighbors feature high emptiness, so we can “balance” potential between them.

To do this, we introduce edge potential: U(∆) := U̇∆ + Ū∆

Ū∆ = Ūe1
∆ + Ūe2

∆ + Ūe3
∆

Ūe
∆ :=

{
qde if |e| > l

0 otherwise
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40 counter examples

b1                   b2                   b3                   b4                   b5                   b6                   b7                   b8                   b9
When the ratio of two discs is close enough to the ratio in a dense binary packing, we
can pack these disc in a similar manner (non triangulated) and still get high density

Examples:
triangulated counter example
ternary packing using only 2 discs

70 =0.921134 s=0.268266 =0.926300 s=0.268266

97 =0.931017 s=0.175341 =0.932390 s=0.175341

triangulated counter example
ternary packing using only 2 discs

20 =0.931369 s=0.121445 =0.937371 s=0.121445

47 =0.915670 s=0.386662 =0.919703 s=0.386662

triangulated counter example
ternary packing using only 2 discs

63 =0.914301 s=0.337336 =0.917953 s=0.337336

111 =0.914148 s=0.409604 =0.917188 s=0.409604
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