Some questions around high genus maps

Baptiste Louf Institut de Mathématiques de Bordeaux

image : N. Curien

Maps: definitions and history

Definition : maps

Map = gluing of polygons along their edges to create a (compact, connected, oriented) surface Genus g of the map = genus of the surface = # of handles

Rooted = an oriented edge is distinguished

Definition : maps

Alternative definition = graphs embedded on surfaces

Definition : maps

Alternative definition = graphs embedded on surfaces

(alternative definition = factorisations of permutations)

 $\label{eq:Maps} \begin{array}{l} \mathsf{Maps} = \mathsf{good} \ \mathsf{model} \ \mathsf{of} \ \mathsf{discrete} \ \mathsf{geometry} \\ \rightarrow \mathsf{what} \ \mathsf{does} \ \mathsf{a} \ \mathsf{large} \ \mathsf{random} \ \mathsf{map} \ \mathsf{look} \ \mathsf{like} \ ? \end{array}$

 $\label{eq:Maps} \begin{array}{l} \mathsf{Maps} = \mathsf{good} \ \mathsf{model} \ \mathsf{of} \ \mathsf{discrete} \ \mathsf{geometry} \\ \rightarrow \mathsf{what} \ \mathsf{does} \ \mathsf{a} \ \mathsf{large} \ \mathsf{random} \ \mathsf{map} \ \mathsf{look} \ \mathsf{like} \ ? \end{array}$

Family \mathcal{M}_n of random maps parametrized by size n. Take $M_n \in \mathcal{M}_n$ uar, study its properties/limit as $n \to \infty$

Large random maps

Example: $\mathcal{M}_n =$ planar (genus 0) maps with n edges

Large random maps

Example: $\mathcal{M}_n = \text{planar} (\text{genus } 0) \text{ maps with } n \text{ edges}$

→ diameter = $\Theta(n^{1/4})$ [Chassaing–Schaeffer '02] → "scaling limit" = Brownian map [Le Gall, Miermont '13]

image : J. Bettinelli

Large random maps

Example: $\mathcal{M}_n = \text{planar} (\text{genus } 0) \text{ maps with } n \text{ edges}$

→ diameter = $\Theta(n^{1/4})$ [Chassaing–Schaeffer '02] → "scaling limit" = Brownian map [Le Gall, Miermont '13]

image : J. Bettinelli

Fundamental tool : Schaeffer's bijection Planar maps \leftrightarrow labeled trees

Local convergence

Local convergence = limit law of finite neighborhoods of the root

 $M_n \to \mathbb{M}$ iff for all finite m: $\mathbb{P}(m \subset M_n) \to \mathbb{P}(m \subset \mathbb{M})$

Local convergence

Local convergence = limit law of finite neighborhoods of the root

 $M_n \to \mathbb{M}$ iff for all finite m: $\mathbb{P}(m \subset M_n) \to \mathbb{P}(m \subset \mathbb{M})$

 \mathcal{M}_n = triangulations (all faces of degree 3) of the sphere with 2n triangles

[Angel, Schramm '02] : the sequence M_n converges to the Uniform Infinite Planar Triangulation (UIPT).

High genus maps

What is a high genus map ?

Take $(g_n)_{n \in \mathbb{N}}$ s.t. $\frac{g_n}{n} \to \theta \in (0, 1/2)$

For instance, \mathcal{M}_n = triangulations of genus g_n with 2n triangles

What is a high genus map ?

Take $(g_n)_{n \in \mathbb{N}}$ s.t. $\frac{g_n}{n} \to \theta \in (0, 1/2)$

For instance, \mathcal{M}_n = triangulations of genus g_n with 2n triangles

Genus goes to infinity very fast !

Average degree of a vertex = $\frac{6}{1-2\theta}$ \rightarrow related to average curvature \rightarrow expected hyperbolic behaviour

"Toy model": one faced maps

For $\mathcal{M}_n =$ maps with one face, genus g_n and n edges

 \rightarrow local limit = "hyperbolic tree" (supercritical GW) [Angel-Chapuy-Curien-Ray 15]

- \rightarrow diameter = $\Theta(\log n)$ [Ray 15]
- \rightarrow short cycles follow a Poisson law [Janson–L. 21]
- \rightarrow large expander subgraphs [L. 21]

"Toy model": one faced maps

For $\mathcal{M}_n =$ maps with one face, genus g_n and n edges

→ local limit = "hyperbolic tree" (supercritical GW) [Angel–Chapuy–Curien–Ray 15] → diameter = $\Theta(\log n)$ [Ray 15]

- \rightarrow short cycles follow a Poisson law [Janson–L. 21]
- \rightarrow large expander subgraphs [L. 21]

Fundamental tool = bijection between one face maps and decorated trees [Chapuy–Féray–Fusy 14]

The local limit of high genus triangulations

Take $(g_n)_{n \in \mathbb{N}}$ s.t. $\frac{g_n}{n} \to \theta \in (0, 1/2)$

For instance, \mathcal{M}_n = triangulations of genus g_n with 2n triangles

The local limit of high genus triangulations

Take $(g_n)_{n\in\mathbb{N}}$ s.t. $\frac{g_n}{n} \to \theta \in (0, 1/2)$

For instance, \mathcal{M}_n = triangulations of genus g_n with 2n triangles

```
Conjecture [Benjamini, Curien], Theorem
[Budzinski,L. 19] :
Local limit of M_n = \mathsf{PSHT}(\lambda)
```

 $\mathsf{PHST}=\mathsf{one}\ \mathsf{parameter}\ \mathsf{family}\ \mathsf{of}\ \mathsf{random}\ \mathsf{infinite}\ \mathsf{maps}\ \mathsf{of}\ \mathsf{the}\ \mathsf{plane},\ \mathsf{deformation}\ \mathsf{of}\ \mathsf{the}\ \mathsf{UIPT}$

image : N. Curien

Hyperbolic features, e.g. $vol(B_r) = exp(cr)$

A surprising corollary

For all r constant, $B_r(M_n)$ is planar with proba 1 - o(1) !

A surprising corollary

For all r constant, $B_r(M_n)$ is planar with proba 1 - o(1) !

Actually ...

A surprising corollary

For all r constant, $B_r(M_n)$ is planar with proba 1 - o(1) !

Actually ...

Theorem [L. 20+]: There exists a constant a such that if $r = a \log n$, then $B_r(M_n)$ is planar with proba 1 - o(1)

Asymptotics

Let $\tau(n, g_n)$ = number of triangulations of genus g_n with 2n triangles

Theorem [Budzinski–L. 19]:

There are explicit continuous functions λ and f such that:

$$\frac{\tau(n-1,g_n)}{\tau(n,g_n)} \to \lambda(\theta)$$

 and

$$\tau(n, g_n) = n^{2g_n} \exp(nf(\theta) + o(n))$$

What's left to discover

Global observables ?

Conjecture:

The diameter of high genus maps is $\Theta(\log n)$ (lower bound OK).

Conjecture:

The systole (size of smallest non contractible cycle) of high genus maps is a.s. finite).

Asymptotics ?

Open problem:

Find an asymptotic equivalent of $\tau(n, g_n)$

Conjecture (with Elvey-Price–Fang–Wallner):

$$\tau(n,g) \sim t_g n^{\frac{5}{2}(g-1)} \exp(nf(\frac{g}{n})) J(\frac{g}{n})$$

Bijections ?

Recurrence formula for triangulations [Goulden–Jackson '08]

$$(n+1)\tau(n,g) = 4n(3n-2)(3n-4)\tau(n-2,g-1) + 4(3n-1)\tau(n-1,g) +4\sum_{i+j=n-2}\sum_{g_1+g_2=g}(3i+2)(3j+2)\tau(i,g_1)\tau(j,g_2)$$

Very combinatorial, but proven by algebraic means \rightarrow we want a bijection !

Particular cases known:

- triangulations with only one vertex [Chapuy–Féray–Fusy 14]
- planar triangulations [L. 19], reinterpreted with lambda-terms [Singh 22]

Bijections often help understand geometric properties of random maps !

Other geometric models ?

Hope: our geometric/combinatorial/enumeration methods for maps could be useful for other models of maps in high genus !

- hyperbolic surfaces (with or without cusps)
- square tiled surfaces
- Hurwitz numbers (branched covers of the sphere)
- . . .

