Some questions around high genus maps

Baptiste Louf
Institut de Mathématiques de Bordeaux

image: N. Curien

Maps: definitions and history

Definition : maps

Map $=$ gluing of polygons along their edges to create a (compact, connected, oriented) surface
Genus g of the map $=$ genus of the surface $=\#$ of handles Rooted $=$ an oriented edge is distinguished

Definition : maps

Alternative definition $=$ graphs embedded on surfaces

Definition : maps

Alternative definition $=$ graphs embedded on surfaces

(alternative definition $=$ factorisations of permutations)

Large random maps

Maps = good model of discrete geometry \rightarrow what does a large random map look like?

Large random maps

Maps = good model of discrete geometry \rightarrow what does a large random map look like?

Family \mathcal{M}_{n} of random maps parametrized by size n.
Take $\boldsymbol{M}_{n} \in \mathcal{M}_{n}$ uar, study its properties/limit as $n \rightarrow \infty$

Large random maps

Example: $\mathcal{M}_{n}=$ planar (genus 0) maps with n edges

Large random maps

Example: $\mathcal{M}_{n}=$ planar (genus 0) maps with n edges
\rightarrow diameter $=\Theta\left(n^{1 / 4}\right)$ [Chassaing-Schaeffer '02]
\rightarrow "scaling limit" $=$ Brownian map [Le Gall, Miermont '13]

Large random maps

Example: $\mathcal{M}_{n}=$ planar (genus 0) maps with n edges
\rightarrow diameter $=\Theta\left(n^{1 / 4}\right)$ [Chassaing-Schaeffer '02]
\rightarrow "scaling limit" $=$ Brownian map [Le Gall, Miermont '13]

Fundamental tool:Schaeffer's bijection
Planar maps \leftrightarrow labeled trees

Local convergence

Local convergence $=$ limit law of finite neighborhoods of the root

$M_{n} \rightarrow \mathbb{M}$ iff for all finite m :
$\mathbb{P}\left(m \subset \boldsymbol{M}_{n}\right) \rightarrow \mathbb{P}(m \subset \mathbb{M})$

Local convergence

Local convergence $=$ limit law of finite neighborhoods of the root

$M_{n} \rightarrow \mathbb{M}$ iff for all finite m :
$\mathbb{P}\left(m \subset \boldsymbol{M}_{n}\right) \rightarrow \mathbb{P}(m \subset \mathbb{M})$
$\mathcal{M}_{n}=$ triangulations (all faces of degree 3) of the sphere with $2 n$ triangles
[Angel, Schramm '02] : the sequence \boldsymbol{M}_{n} converges to the Uniform Infinite Planar Triangulation (UIPT).

$$
\underline{2}
$$

What is a high genus map ?

Take $\left(g_{n}\right)_{n \in \mathbb{N}}$ s.t. $\frac{g_{n}}{n} \rightarrow \theta \in(0,1 / 2)$
For instance, $\mathcal{M}_{n}=$ triangulations of genus g_{n} with $2 n$ triangles

What is a high genus map ?

Take $\left(g_{n}\right)_{n \in \mathbb{N}}$ s.t. $\frac{g_{n}}{n} \rightarrow \theta \in(0,1 / 2)$
For instance, $\mathcal{M}_{n}=$ triangulations of genus g_{n} with $2 n$ triangles

Genus goes to infinity very fast!

Average degree of a vertex $=\frac{6}{1-2 \theta}$
\rightarrow related to average curvature
\rightarrow expected hyperbolic behaviour

"Toy model": one faced maps

For $\mathcal{M}_{n}=$ maps with one face, genus g_{n} and n edges
\rightarrow local limit = "hyperbolic tree" (supercritical GW) [Angel-Chapuy-Curien-Ray 15]
\rightarrow diameter $=\Theta(\log n)$ [Ray 15]
\rightarrow short cycles follow a Poisson law [Janson-L. 21]
\rightarrow large expander subgraphs [L. 21]

"Toy model": one faced maps

For $\mathcal{M}_{n}=$ maps with one face, genus g_{n} and n edges
\rightarrow local limit $=$ "hyperbolic tree" (supercritical GW) [Angel-Chapuy-Curien-Ray 15]
\rightarrow diameter $=\Theta(\log n)$ [Ray 15]
\rightarrow short cycles follow a Poisson law [Janson-L. 21]
\rightarrow large expander subgraphs [L. 21]
Fundamental tool $=$ bijection between one face maps and decorated trees [Chapuy-Féray-Fusy 14]

The local limit of high genus triangulations

Take $\left(g_{n}\right)_{n \in \mathbb{N}}$ s.t. $\frac{g_{n}}{n} \rightarrow \theta \in(0,1 / 2)$
For instance, $\mathcal{M}_{n}=$ triangulations of genus g_{n} with $2 n$ triangles

The local limit of high genus triangulations

Take $\left(g_{n}\right)_{n \in \mathbb{N}}$ s.t. $\frac{g_{n}}{n} \rightarrow \theta \in(0,1 / 2)$
For instance, $\mathcal{M}_{n}=$ triangulations of genus g_{n} with $2 n$ triangles

Conjecture [Benjamini, Curien], Theorem
[Budzinski,L. 19]:
Local limit of $\boldsymbol{M}_{n}=\operatorname{PSHT}(\lambda)$

PHST = one parameter family of random infinite maps of the plane, deformation of the UIPT

image: N. Curien

Hyperbolic features, e.g. $\operatorname{vol}\left(B_{r}\right)=\exp (c r)$

A surprising corollary

For all r constant, $B_{r}\left(\boldsymbol{M}_{n}\right)$ is planar with proba $1-o(1)$!

A surprising corollary

For all r constant, $B_{r}\left(\boldsymbol{M}_{n}\right)$ is planar with proba $1-o(1)$!

Actually ...

A surprising corollary

For all r constant, $B_{r}\left(\boldsymbol{M}_{n}\right)$ is planar with proba $1-o(1)$!

Actually ...

Theorem [L. 20+]:
There exists a constant a such that if $r=a \log n$, then $B_{r}\left(\boldsymbol{M}_{n}\right)$ is planar with proba $1-o(1)$

Asymptotics

Let $\tau\left(n, g_{n}\right)=$ number of triangulations of genus g_{n} with $2 n$ triangles

Theorem [Budzinski-L. 19]:
There are explicit continuous functions λ and f such that:

$$
\frac{\tau\left(n-1, g_{n}\right)}{\tau\left(n, g_{n}\right)} \rightarrow \lambda(\theta)
$$

and

$$
\tau\left(n, g_{n}\right)=n^{2 g_{n}} \exp (n f(\theta)+o(n))
$$

What's left to discover

Global observables ?

Conjecture:
The diameter of high genus maps is $\Theta(\log n)$ (lower bound OK).

Conjecture:

The systole (size of smallest non contractible cycle) of high genus maps is a.s. finite).

Asymptotics ?

Open problem:

Find an asymptotic equivalent of $\tau\left(n, g_{n}\right)$

Conjecture (with Elvey-Price-Fang-Wallner):

$$
\tau(n, g) \sim t_{g} n^{\frac{5}{2}(g-1)} \exp \left(n f\left(\frac{g}{n}\right)\right) J\left(\frac{g}{n}\right)
$$

Bijections ?

Recurrence formula for triangulations [Goulden-Jackson '08]

$$
\begin{aligned}
(n+1) \tau(n, g)= & 4 n(3 n-2)(3 n-4) \tau(n-2, g-1)+4(3 n-1) \tau(n-1, g) \\
& +4 \sum_{i+j=n-2} \sum_{g_{1}+g_{2}=g}(3 i+2)(3 j+2) \tau\left(i, g_{1}\right) \tau\left(j, g_{2}\right)
\end{aligned}
$$

Very combinatorial, but proven by algebraic means \rightarrow we want a bijection!

Particular cases known:

- triangulations with only one vertex [Chapuy-Féray-Fusy 14]
- planar triangulations [L. 19], reinterpreted with lambda-terms [Singh 22]

Bijections often help understand geometric properties of random maps !

Other geometric models ?

Hope: our geometric/combinatorial/enumeration methods for maps could be useful for other models of maps in high genus !

- hyperbolic surfaces (with or without cusps)
- square tiled surfaces
- Hurwitz numbers (branched covers of the sphere)
- ...

