New analytic techniques for proving the inherent ambiguity of context-free languages

Florent Koechlin
Inria Grand Est, Loria, Nancy, France

Séminaire Combalgo, LaBRI
January 2023, 24th

Reminder on formal languages

Word: finite sequence of letters: $a b, b a, \varepsilon, \ldots$
Formal language: set of words over a finite alphabet Σ.
Example 1: $(a+b)^{*}:=\left\{c_{1} \ldots c_{n}: n \in \mathbb{N}, c_{i} \in\{a, b\}\right\}$
Example 2: $\quad\left\{a^{n} b^{n}: n \in \mathbb{N}^{*}\right\}$

Regular languages

Regular languages are the simplest languages in the Chomsky hierarchy. They are exactly the languages recognized by :

- Regular expressions:

$$
\Sigma^{*} a \Sigma^{*},(a+b)^{*} b, \Sigma^{*} a \Sigma^{r-1}, \ldots
$$

- (Deterministic) finite automata

Context-free languages

Regular languages \subsetneq Context-free languages
Context-free languages are the second-level class of languages in the Chomsky hierarchy. They are exactly the languages recognized by :

- Non-deterministic pushdown automata
- Context-free grammars

$$
\left.\begin{array}{rl}
S \rightarrow a S b|\varepsilon, \quad S \rightarrow[S] S| \varepsilon, \quad\left\{\left.\begin{array}{l}
S \\
\rightarrow a S b|C| c c \\
C
\end{array} \rightarrow c C \right\rvert\, c\right.
\end{array}\right\}
$$

$\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$ is context-free but not regular

Context-free grammar

$S \rightarrow[S] S \mid \varepsilon$
Derivation
$S \Rightarrow[S] S \Rightarrow[[S] S] S \Rightarrow[[] S] S \Rightarrow[[][S] S] S \Rightarrow[[][1 S] S \Rightarrow[[][] S \Rightarrow[[][]]$

Context-free grammar

$S \rightarrow[S] S \mid \varepsilon$
Derivation
$S \Rightarrow[S] S \Rightarrow[[S] S] S \Rightarrow[[] S] S \Rightarrow[[][S] S] S \Rightarrow[[][1 S] S \Rightarrow[[][] S \Rightarrow[[][]]$
$S \Rightarrow[S] S \Rightarrow[S] \Rightarrow[[S] S] \Rightarrow[[] S] \Rightarrow[[][S] S] \Rightarrow[[][S]] \Rightarrow[[][]]$

Context-free grammar

$S \rightarrow[S] S \mid \varepsilon$
Derivation
$S \Rightarrow[S] S \Rightarrow[[S] S] S \Rightarrow[[] S] S \Rightarrow[[][S] S] S \Rightarrow[[][S] S \Rightarrow[[][] S \Rightarrow[[][]]$
$S \Rightarrow[S] S \Rightarrow[S] \Rightarrow[[S] S] \Rightarrow[[] S] \Rightarrow[[][S] S] \Rightarrow[[][S]] \Rightarrow[[][]]$
Derivation tree

Unambiguous context-free grammar
Every word in its language has exactly one derivation tree.

Unambiguous context-free languages

deterministic CFL \subsetneq unambiguous $\mathrm{CFL} \subsetneq$ non det. CFL
$\left\{a^{n} b^{m} c^{p} \mid n=m\right.$ or $\left.m=p\right\}$ is inherently ambiguous

Relevant intermediate model between deterministic and non-deterministic context-free languages.

Finding inherently ambiguous languages is interesting. However:

- (2) deciding whether a grammar is ambiguous is undecidable [Chomsky-Schützenberger'63]
- () deciding whether a context-free language is inherently ambiguous is undecidable [Ginsburg-Ullian'66, Greibach'68]

Standard methods to prove inherent ambiguity

- Iteration on derivation trees

By hand or using iteration lemmas (e.g. Ogden's lemma)

- Iteration on semilinear sets
- Generating series
- + closure property: if R is regular

$$
L \text { unambiguous } \Rightarrow L \cap R \text { unambiguous }
$$

$L \cap R$ inherently ambiguous $\Rightarrow L$ inherently ambiguous

Iteration on trees: $a^{n} b^{m} c^{p}$ with $n=m$ or $m=p$

- Suppose that it is recognized by an unambiguous grammar G
- For k sufficiently big, find an iterating pair of a's and b's of same length in a derivation of $a^{k} b^{k} c^{k+k!}$

Iteration on trees: $a^{n} b^{m} c^{p}$ with $n=m$ or $m=p$

- Suppose that it is recognized by an unambiguous grammar G
- For k sufficiently big, find an iterating pair of a's and b's of same length in a derivation of $a^{k} b^{k} c^{k+k!}$

Iteration on trees: $a^{n} b^{m} c^{p}$ with $n=m$ or $m=p$

- Suppose that it is recognized by an unambiguous grammar G
- For k sufficiently big, find an iterating pair of a's and b's of same length in a derivation of $a^{k} b^{k} c^{k+k!}$

Iteration on trees: $a^{n} b^{m} c^{p}$ with $n=m$ or $m=p$

- Suppose that it is recognized by an unambiguous grammar G
- For k sufficiently big, find an iterating pair of a's and b's of same length in a derivation of $a^{k} b^{k} c^{k+k!}$

Iteration on trees: $a^{n} b^{m} c^{p}$ with $n=m$ or $m=p$

- Suppose that it is recognized by an unambiguous grammar G
- For k sufficiently big, find an iterating pair of a's and b's of same length in a derivation of $a^{k} b^{k} c^{k+k!}$

Iteration on trees: $a^{n} b^{m} c^{p}$ with $n=m$ or $m=p$
Main idea :

- Suppose that it is recognized by an unambiguous grammar G
- For k sufficiently big, find an iterating pair of a's and b's of same length in a derivation of $a^{k} b^{k} c^{k+k!}$
- Derive from it a derivation tree of $a^{k+k!} b^{k+k!} c^{k+k!}$
- Repeat the process from a derivation tree of $a^{k+k!} b^{k} c^{k}$ to obtain a different derivation of $a^{k+k!} b^{k+k!} c^{k+k!}$

Methods by iteration

Advantages:

- can handle simple languages that are unreachable with other techniques
- usually bring more information than just inherent ambiguity

Drawbacks:

- are too tedious for complex languages
- are too specific for the studied language fail on $\left\{a^{n} b^{m} c^{p} \mid n \neq m\right.$ or $\left.m \neq p\right\}$

Methods based on generating series

Generating series of a language \mathcal{L}
$L(x)=\sum_{w \in L} x^{|w|}=\sum_{n \in \mathbb{N}} \ell_{n} x^{n} \quad \ell_{n}:$ number of words of length n
Example: $(a+b)^{*} \rightarrow \ell_{n}=2^{n} \rightarrow L(x)=\sum_{n} 2^{n} x^{n}=\frac{1}{1-2 x}$
Example: $\left\{a^{n} b^{n}\right\} \rightarrow \ell_{2 n}=1 \rightarrow L(x)=\frac{1}{1-x^{2}}$

Theorem [Chomsky-Schützenberger, '63]: The generating series of an unambiguous context-free language is algebraic.

$$
P(x, L(x))=0
$$

Example: $S \rightarrow[S] S \mid \varepsilon \quad S(x)=x^{2} S(x)^{2}+1$

Methods based on generating series

Flajolet's idea: if the series of a context-free language is not algebraic, then it is an inherently ambiguous context-free language.

Proposition [Useful criteria, Flajolet '87]:
Let $L(z)=\sum_{n \in \mathbb{N}} \ell_{n} z^{n}$ a series.

- If $L(z)$ has infinitely many singularities, then $L(z)$ is not algebraic.
- If $\ell_{n} \sim_{n \rightarrow \infty} \gamma \beta^{n} n^{r}$, with $r \notin \mathbb{Q} \backslash\{-1,-2,-3, \ldots\}$, then $L(z)$ is not algebraic.
- If ℓ_{n} does not satisfy a linear recurrence with polynomial coefficients in n, then $L(z)$ is not algebraic.

Analytic criteria for inherent ambiguity

Theorem [Flajolet '87]
$\Omega_{3}=\left\{w \in\{a, b, c\}^{*}:|w|_{a} \neq|w|_{b}\right.$ or $\left.|w|_{b} \neq|w|_{c}\right\}$ is inherently ambiguous.

Analytic criteria for inherent ambiguity

Theorem [Flajolet '87]
$\Omega_{3}=\left\{w \in\{a, b, c\}^{*}:|w|_{a} \neq|w|_{b}\right.$ or $\left.|w|_{b} \neq|w|_{c}\right\}$ is inherently ambiguous.

Analytic proof:

- Suppose that $\Omega_{3}(x)$ is algebraic
- Let $I=(a+b+c)^{*} \backslash \Omega_{3}$
- Then $I(x)=\frac{1}{1-3 x}-\Omega_{3}(x)$ would be algebraic by closure properties
- But $I=\left\{w \in\{a, b, c\}^{*}:|w|_{a}=|w|_{b}=|w|_{c}\right\}$

$$
\left[x^{3 n}\right] I(x)=\binom{3 n}{n, n, n}=\frac{(3 n)!}{(n!)^{3}} \sim_{n \rightarrow \infty} 3^{3 n} \frac{\sqrt{3}}{2 \pi n}
$$

Flajolet's analytic method

Advantages :

- is very powerful : P. Flajolet (re)proved the inherent ambiguity of 15 languages, some of which were conjectures, in only one article

```
O},\mp@subsup{O}{4}{},\mp@subsup{\Omega}{3}{},C,S,\mp@subsup{P}{1}{},\mp@subsup{P}{2}{},\mp@subsup{G}{\not=}{},\mp@subsup{G}{<}{},\mp@subsup{G}{>}{},\mp@subsup{G}{=}{},\mp@subsup{H}{\not=}{},\mp@subsup{K}{1}{},\mp@subsup{K}{2}{},
```

- is robust: it works for both

$$
\begin{aligned}
\Omega_{3} & =\left\{w \in\{a, b, c\}^{*}:|w|_{a} \neq|w|_{b} \text { or }|w|_{b} \neq|w|_{c}\right\} \text { and } \\
O_{3} & =\left\{w \in\{a, b, c\}^{*}:|w|_{a}=|w|_{b} \text { or }|w|_{b}=|w|_{c}\right\} .
\end{aligned}
$$

Remark: $O_{3} \cap a^{*} b^{*} c^{*}=\left\{a^{n} b^{m} c^{p}\right.$ with $n=m$ or $\left.m=p\right\}$

Flajolet's analytic method

Advantages:

- is very powerful : P. Flajolet (re)proved the inherent ambiguity of 15 languages, some of which were conjectures, in only one article

$$
O_{3}, O_{4}, \Omega_{3}, C, S, P_{1}, P_{2}, G_{\neq}, G_{<}, G_{>}, G_{=}, H_{\neq}, K_{1}, K_{2}, B
$$

- is robust: it works for both

$$
\begin{aligned}
\Omega_{3} & =\left\{w \in\{a, b, c\}^{*}:|w|_{a} \neq|w|_{b} \text { or }|w|_{b} \neq|w|_{c}\right\} \text { and } \\
O_{3} & =\left\{w \in\{a, b, c\}^{*}:|w|_{a}=|w|_{b} \text { or }|w|_{b}=|w|_{c}\right\} .
\end{aligned}
$$

Remark: $O_{3} \cap a^{*} b^{*} c^{*}=\left\{a^{n} b^{m} c^{p}\right.$ with $n=m$ or $\left.m=p\right\}$

Drawbacks:

- does not work on too simple languages, whose series are rational; for instance for:

$$
\begin{gathered}
\Omega_{3} \cap a^{*} b^{*} c^{*}=\left\{a^{n} b^{m} c^{p} \text { with } n \neq m \text { or } m \neq p\right\} . \\
L(x)=\frac{1}{1-3 x}-\frac{1}{1-x^{3}}
\end{gathered}
$$

In this talk

- rational generating series can still be used to handle the inherent ambiguity of many bounded context-free languages
- I will explain how an old result used to derive iteration on semilinear sets can de derived into two useful criteria on series:
- The 3-variable criterion Re-discover and extension of [Makarov'21]
- The interlacing criterion

Bounded languages

Main question: can we detect the inherent ambiguity of bounded languages using generating series?

A language L is bounded with respect to $\langle w\rangle:=\left\langle w_{1}, \ldots, w_{d}\right\rangle$ if

$$
L \subseteq w_{1}^{*} \ldots w_{d}^{*}
$$

where $w^{*}=\{\varepsilon, w, w w, w w w, \ldots\}$
Example: $\left\{a^{n} b^{m} c^{p}: \ldots\right\} \subseteq a^{*} b^{*} c^{*}$
Example: $\left\{(a b b)^{n}(b b)^{m} c^{p}: \ldots\right\} \subseteq(a b b)^{*}(b b)^{*} c^{*}$

Bounded languages

If L is bounded with respect to $\langle w\rangle$, let us define:

$$
\mathcal{S}_{\langle w\rangle}(L)=\left\{\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{N}^{d}: w_{1}^{i_{1}} \ldots w_{d}^{i_{d}} \in L\right\}
$$

Example: $\quad \mathcal{S}_{\langle a, b, c\rangle}\left(\left\{a^{n} b^{m} c^{p}: n=m \vee m=p\right\}\right)$

$$
=\left\{(n, m, p) \in \mathbb{N}^{3}: n=m \vee m=p\right\}
$$

Proposition [Ginsburg and Ullian, '62]: Every bounded context-free language is semilinear, i.e., $\mathcal{S}_{\langle w\rangle}(L)$ is semilinear.

Semilinear sets of \mathbb{N}^{d} (Parikh 61/66)

Linear set: Set of the form $\vec{c}+P^{*}$ where $P=\left\{p_{1}, \ldots, p_{r}\right\}$ is called a set of periods, and $P^{*}=\left\{\lambda_{1} p_{1}+\ldots+\lambda_{r} p_{r}: \lambda_{i} \in \mathbb{N}\right\}$

Semilinear set: Finite union of linear sets: $S=\bigcup_{i=1}^{r} \vec{c}_{i}+P_{i}^{*}$

Inherent ambiguity of bounded languages

If L is bounded with respect to $\langle w\rangle$:

$$
\mathcal{S}_{\langle w\rangle}(L)=\left\{\left(p_{1}, \ldots, p_{d}\right) \in \mathbb{N}^{d}: w_{1}^{p_{1}} \ldots w_{d}^{p_{d}} \in L\right\}
$$

Theorem [Ginsburg and Ullian, '66]: A bounded context-free language L is unambiguous if and only if $\mathcal{S}_{\langle w\rangle}(L)$ is of the form

$$
\mathcal{S}_{\langle w\rangle}(L)=\biguplus_{i=1}^{r}\left(\vec{c}_{i}+P_{i}^{*}\right)
$$

where:

- the union is disjoint
- the vectors in each P_{i} are linearly independent
[Eilenberg \& Schützenberger, Ito 69]
- each P_{i} is stratified

Stratified set (Ginsburg and Spanier, '66)

A finite subset $X \subseteq \mathbb{N}^{d}$ is stratified if:

1. every vector in X has at most two non-zero coordinates
2. no two vectors in X have interlacing non-zero coordinates, i.e. there are no $1 \leq i<j<m<n \leq d$ and two vectors $\vec{x}, \overrightarrow{x^{\prime}} \in X$ such that $x_{i} x_{j} x_{m}^{\prime} x_{n}^{\prime} \neq 0$.

$$
\vec{x} \quad \overrightarrow{x^{\prime}}
$$

forbidden

Stratified set (Ginsburg and Spanier, '66)

A finite subset $X \subseteq \mathbb{N}^{d}$ is stratified if:

1. every vector in X has at most two non-zero coordinates
2. no two vectors in X have interlacing non-zero coordinates, i.e. there are no $1 \leq i<j<m<n \leq d$ and two vectors $\vec{x}, \overrightarrow{x^{\prime}} \in X$ such that $x_{i} x_{j} x_{m}^{\prime} x_{n}^{\prime} \neq 0$.

$$
\left\{\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)\right\},\left\{\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\},\left\{\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
2 \\
0 \\
1
\end{array}\right)\right\}
$$

Inherent ambiguity of bounded languages

Corollary: If $\mathcal{S}_{\langle w\rangle}(L)$ can not described as a disjoint union of linear set with stratified linearly independent periods then L is inherently ambiguous.

For instance, $\left\{a^{n} b^{m} c^{p}: n=m\right.$ or $\left.m=p\right\}$ is inherently ambiguous if and only if the set $\left\{(n, m, p) \in \mathbb{N}^{3}: n=m\right.$ or $\left.m=p\right\}$ is not a disjoint union of linear sets whose set of periods is a stratified set of linearly independent vectors.

And $\left\{a^{n} b^{m} c^{p}: n \neq m\right.$ or $\left.m \neq p\right\}$ is inherently ambiguous if and only if the set $\left\{(n, m, p) \in \mathbb{N}^{3}: n \neq m\right.$ or $\left.m \neq p\right\}$ is not \ldots

Is it useful?

Theoretic advantages:

- it is an equivalence, that leaves the world of derivation trees
- the proof uses very complicated iteration arguments on derivation trees, so we are thankful!
"The proof of the necessity is extremely complicated"

Practical Drawbacks:

- No practical method to prove that $\mathcal{S}_{\langle w\rangle}(L)$ can not described this way
- it is used in the literature with iteration arguments on semilinear sets: proofs are even trickier than on derivation trees, are too specific, etc.
- hence it has been shadowed by Ogden's Lemma [Ogden '68]

Generating series associated to a semilinear set.

If $S \subseteq \mathbb{N}^{d}$, then:

$$
S(\vec{x}):=\sum_{\left(v_{1}, \ldots, v_{d}\right) \in S} x_{1}^{v_{1}} \ldots x_{d}^{v_{d}}=\sum_{\vec{v} \in S} \vec{x}^{\vec{v}}
$$

Example: Linear set $(1,1)+\{(1,2),(1,0)\}^{*}$

$$
S(a, b)=\sum_{n, m} a^{1+1 n+1 m} b^{1+2 n+0 m}=\frac{a^{1} b^{1}}{\left(1-a^{1} b^{2}\right)\left(1-a^{1} b^{0}\right)}
$$

Example: Linear set $\vec{c}+\left\{\overrightarrow{p_{1}}, \ldots, \overrightarrow{p_{r}}\right\}^{*}$ with independent periods

$$
S(\vec{x})=\sum_{\lambda_{1}, \ldots, \lambda_{r}} \vec{x}^{\vec{c}+\lambda_{1} \vec{p}_{1}+\ldots+\lambda_{r} \vec{p}_{r}}=\frac{\vec{x}^{c}}{\prod_{j=1}^{r}\left(1-\vec{x}^{\vec{p}_{j}}\right)}
$$

Theorem [Eilenberg \& Schützenberger, Ito 69]: If S is semilinear, then $S(\vec{x})$ is rational.

It is useful!

Theorem (3-variable criterion [Koechlin 22])
Let $L \subseteq w_{1}^{*} \ldots w_{d}^{*}$ a bounded context-free language with respect to $\langle w\rangle$. Let $S=S_{\langle w\rangle}(L)$ its associated semilinear set.
Let us write

$$
S\left(x_{1}, \ldots, x_{d}\right):=\sum_{\left(i_{1}, \ldots, i_{d}\right) \in S} x_{1}^{i_{1}} \ldots x_{d}^{i_{d}}=\frac{P\left(x_{1}, \ldots, x_{d}\right)}{Q\left(x_{1}, \ldots, x_{d}\right)} \in \mathbb{K}\left(x_{1}, \ldots, x_{d}\right)
$$

in irreducible form.
Suppose that there exists an irreducible polynomial $D \in \mathbb{K}\left[x_{1}, \ldots, x_{d}\right]$ dividing Q, such that D has three or more variables.

Then L is inherently ambiguous.

It is useful!

Theorem (3-variable criterion [Koechlin 22])
Let $L \subseteq w_{1}^{*} \ldots w_{d}^{*}$ a bounded context-free language with respect to $\langle w\rangle$. Let $S=S_{\langle w\rangle}(L)$ its associated semilinear set.
Let us write

$$
S\left(x_{1}, \ldots, x_{d}\right):=\sum_{\left(i_{1}, \ldots, i_{d}\right) \in S} x_{1}^{i_{1}} \ldots x_{d}^{i_{d}}=\frac{P\left(x_{1}, \ldots, x_{d}\right)}{Q\left(x_{1}, \ldots, x_{d}\right)} \in \mathbb{K}\left(x_{1}, \ldots, x_{d}\right)
$$

in irreducible form.
Suppose that there exists an irreducible polynomial
$D \in \mathbb{K}\left[x_{1}, \ldots, x_{d}\right]$ dividing Q, such that D has three or more variables.

Then L is inherently ambiguous.
\rightarrow It extends and simplifies the proof of a criterion of [Makarov '21]

Proof

Suppose that L is unambiguous. Then S can be written

$$
S=\biguplus_{i=1}^{r}\left(\vec{c}_{i}+P_{i}^{*}\right)
$$

where the union is disjoint, each P_{i} is stratified, and the vectors in each P_{i} are linearly independent.

Proof

Suppose that L is unambiguous. Then S can be written

$$
S=\biguplus_{i=1}^{r}\left(\vec{c}_{i}+P_{i}^{*}\right)
$$

where the union is disjoint, each P_{i} is stratified, and the vectors in each P_{i} are linearly independent.
Consequently (with $\vec{x}^{\vec{p}}:=x_{1}^{p_{1}} \ldots x_{d}^{p_{d}}$):

$$
S(\vec{x})=\sum_{\left(i_{1}, \ldots, i_{d}\right) \in S} x_{1}^{i_{1}} \ldots x_{d}^{i_{d}}=\sum_{i=1}^{r} \frac{\vec{x}^{c_{i}}}{\prod_{\vec{p} \in P_{i}}\left(1-\vec{x}^{\vec{P}}\right)}=\frac{P_{2}(\vec{x})}{Q_{2}(\vec{x})}
$$

with $Q_{2}(\vec{x})=\prod_{i=1}^{r} \prod_{\vec{p} \in P_{i}}\left(1-\vec{x}^{\vec{\rho}}\right)$. Then D divides Q_{2}.

Proof

Suppose that L is unambiguous. Then S can be written

$$
S=\biguplus_{i=1}^{r}\left(\vec{c}_{i}+P_{i}^{*}\right)
$$

where the union is disjoint, each P_{i} is stratified, and the vectors in each P_{i} are linearly independent.
Consequently (with $\vec{x}^{\vec{p}}:=x_{1}^{p_{1}} \ldots x_{d}^{p_{d}}$):

$$
S(\vec{x})=\sum_{\left(i_{1}, \ldots, i_{d}\right) \in S} x_{1}^{i_{1}} \ldots x_{d}^{i_{d}}=\sum_{i=1}^{r} \frac{\vec{x}^{c_{i}}}{\prod_{\vec{p} \in P_{i}}\left(1-\vec{x}^{\vec{P}}\right)}=\frac{P_{2}(\vec{x})}{Q_{2}(\vec{x})}
$$

with $Q_{2}(\vec{x})=\prod_{i=1}^{r} \prod_{\vec{p} \in P_{i}}\left(1-\vec{x}^{\vec{\rho}}\right)$. Then D divides Q_{2}.
As each P_{i} is stratified, Q_{2} is a product of polynomials with at most 2 variables. Hence D cannot divide Q_{2}. Contradiction.

Examples [Makarov '21]

1. $\left\{a^{n} b^{m} c^{p}\right.$ with $n \neq m$ or $\left.m \neq p\right\}$ is inherently ambiguous:

- $S=\{(n, m, p): n \neq m$ or $m \neq p\}$
- $S=\mathbb{N}^{3} \backslash\{(n, m, p): n=m=p\}$
- $S(a, b, c)=\sum_{n, m, p} a^{n} b^{m} c^{p}-\sum_{n} a^{n} b^{n} c^{n}$

$$
=\frac{1}{(1-a)(1-b)(1-c)}-\frac{1}{1-a b c}
$$

$$
=\frac{a+b+c-a b-a c-b c}{(1-a)(1-b)(1-c)(1-a b c)}
$$

Examples [Makarov '21]

2. $\left\{a^{n} b^{m} c^{p}\right.$ with $n=m$ or $\left.m=p\right\}$ is inherently ambiguous:

$$
\begin{aligned}
& \frac{1}{(1-a b)(1-c)}+\frac{1}{(1-b c)(1-a)}-\frac{1}{1-a b c} \\
= & \frac{1-3 a^{2} b^{2} c^{2}+2 a^{2} b^{2} c+2 a b^{2} c^{2}+2 a^{2} b c-a b^{2} c+2 a b c^{2}-a^{2} b+2 a b c-b c^{2}-a c}{(1-a)(1-b c)(1-c)(1-a b)(1-a b c)}
\end{aligned}
$$

Examples

3. $\left\{a^{n} b^{m} c^{p}\right.$ with $n=m$ or $\left.m \neq p\right\}$ is inherently ambiguous:

$$
\begin{aligned}
& \frac{1}{(1-a)(1-b)(1-c)}-\left(\frac{1}{(1-a)(1-b c)}-\frac{1}{1-a b c}\right) \\
= & \frac{3 a b^{2} c^{2}-2 a b^{2} c-2 a b c^{2}-b^{2} c^{2}+b^{2} c+b c^{2}+a b+a c-2 b c-a+1}{(1-a)(1-b)(1-c)(1-b c)(1-a b c)}
\end{aligned}
$$

Allowing non-distinct symbols: example of primitive words

Primitive words: words that are not the power of a smaller word

$$
\mathcal{P}=\left\{w \in \Sigma^{*}: \forall u \in \Sigma^{*},\left(w \in u^{*} \Rightarrow u=w\right)\right\}
$$

$a a b a \in \mathcal{P}, a b a b \notin \mathcal{P}$
Theorem [Petersen '94]: \mathcal{P} is not an unambiguous context-free language.

Recall: $\mathcal{P} \cap R$ inherently ambiguous $\Rightarrow \mathcal{P}$ inherently ambiguous
New elementary proof:

- $\mathcal{P} \cap a^{*} b a^{*} b a^{*} b=\left\{a^{n} b a^{m} b a^{p} b: n \neq m\right.$ or $\left.m \neq p\right\}$
- $S_{2}(a, x, b, y, c, z)=x y z \cdot \frac{a+b+c-a b-a c-b c}{(1-a)(1-b)(1-c)(1-a b c)}$

Allowing words : complement of Gessel walks

Let \mathcal{G} the set of words in $\{\leftarrow, \rightarrow, \swarrow, \nearrow\}^{*}$ describing a walk starting at $(0,0)$ and staying in the quarter-plane.

Allowing words : complement of Gessel walks

Then $\overline{\mathcal{G}}=\{\leftarrow, \rightarrow, \swarrow, \nearrow\}^{*} \backslash \mathcal{G}$ is inherently ambiguous.
Proof: $\overline{\mathcal{G}} \cap(\nearrow \leftarrow)^{*} \rightarrow^{*} \swarrow^{*}$ is inherently ambiguous.

The associated semilinear is $C=\{(n, m, p) \mid n<p \vee m<p\}$.

Allowing words : complement of Gessel walks

Then $\overline{\mathcal{G}}=\{\leftarrow, \rightarrow, \swarrow, \nearrow\}^{*} \backslash \mathcal{G}$ is inherently ambiguous.
Proof: $\overline{\mathcal{G}} \cap(\nearrow \leftarrow)^{*} \rightarrow^{*} \swarrow^{*}$ is inherently ambiguous.
The associated semilinear is $C=\{(n, m, p) \mid n<p \vee m<p\}$.

$$
\begin{aligned}
S(a, b, c) & =\frac{1}{(1-a)(1-b)(1-c)}-\frac{1}{(1-a b c)(1-a b)(1-b)}-\frac{a}{(1-a b c)(1-a b)(1-a)} \\
& =\frac{(1-a b) c}{(1-c)(1-a)(1-b)(1-a b c)}
\end{aligned}
$$

Allowing words : complement of Gessel walks

Then $\overline{\mathcal{G}}=\{\leftarrow, \rightarrow, \swarrow, \nearrow\}^{*} \backslash \mathcal{G}$ is inherently ambiguous.
Proof: $\overline{\mathcal{G}} \cap(\nearrow \leftarrow)^{*} \rightarrow^{*} \swarrow^{*}$ is inherently ambiguous.
The associated semilinear is $C=\{(n, m, p) \mid n<p \vee m<p\}$.

$$
\begin{aligned}
S(a, b, c) & =\frac{1}{(1-a)(1-b)(1-c)}-\frac{1}{(1-a b c)(1-a b)(1-b)}-\frac{a}{(1-a b c)(1-a b)(1-a)} \\
& =\frac{(1-a b) c}{(1-c)(1-a)(1-b)(1-a b c)}
\end{aligned}
$$

Open question: $G(x)$ is algebraic but not \mathbb{N}-algebraic ([Bostan and Kauers, '10], [Banderier and Drmota, '13]). Can we directly prove that $\frac{1}{1-4 x}-G(x)$ is not \mathbb{N}-algebraic?

Other examples

- $\left\{a^{n} b^{m} c^{p}: p \geq n\right.$ or $\left.p \geq m\right\}$
- Product of palindroms
$C=\left\{w_{1} w_{2}: w_{1}, w_{2} \in\{a, b\}^{*}\right.$ are palindromes $\}$
- The complement of every non-singular walk with small steps on the quarter plane is an inherently ambiguous context-free language. [Koe 22]
- And many many other!
- $O_{3}, O_{4}, \Omega_{3}, C, S, P_{1}, P_{2}, G_{\neq}, G_{<}, G_{>}, G_{=}, H_{\neq}, K_{1}, K_{2}, B$

Limits of this criterion

Advantages :

- is recent
- is robust
- is quick

Drawbacks:

- only for bounded languages *
- this first criterion only deals with the first condition of stratified sets, fails with inherent ambiguity due to interlacing vectors
\rightarrow fails on $\left\{a^{n} b^{m} c^{p} d^{q} \mid n=p\right.$ or $\left.m=q\right\}$

$$
\begin{aligned}
& \frac{1}{(1-a c)(1-b)(1-d)}+\frac{1}{(1-b d)(1-a)(1-c)}-\frac{1}{(1-a c)(1-b d)} \\
= & \frac{1-a b-a c-a d-b c-b d-c d+2 a b c+2 a b d+2 a c d+2 b c d-3 a b c d}{(1-a c)(1-b d)(1-a)(1-b)(1-c)(1-d)}
\end{aligned}
$$

Second criterion

Problem: We need a way to distinguish that $(1-b d)(1-a c)$ is bad for $\left\{a^{n} b^{m} c^{p} d^{q} \mid n=p\right.$ or $\left.m=q\right\}$

$$
\frac{1-a b-a c-a d-b c-b d-c d+2 a b c+2 a b d+2 a c d+2 b c d-3 a b c d}{(1-a c)(1-b d)(1-a)(1-b)(1-c)(1-d)}
$$

but is not bad in the series of $\left\{a^{n} c^{n}: n \geq 0\right\} \cup\left\{b^{n} d^{n}: n \geq 0\right\}$:

$$
\frac{1}{1-a c}+\frac{1}{1-b d}-1=\frac{1-a b c d}{(1-a c)(1-b d)}
$$

In other words, find a way to prove that they were in a same set of periods.

Targeting the interlacing condition

Theorem (interlacing criterion [Koechlin 22])

Let $L \subseteq w_{1}^{*} \ldots w_{d}^{*}$ a bounded context-free language with respect to $\langle w\rangle$. Let $S=S_{\langle w\rangle}(L)$ its associated semilinear set.
Let us write in irreducible form

$$
S\left(x_{1}, \ldots, x_{d}\right)=\frac{P\left(x_{1}, \ldots, x_{d}\right)}{Q\left(x_{1}, \ldots, x_{d}\right)}=\frac{P(\vec{x})}{\left(1-x_{i}^{n} x_{k}^{m}\right) D\left(x_{j}, x_{\ell}\right) \tilde{Q}(\vec{x})}
$$

Suppose that

- Q is divided by two non-univariate irreducible polynomials $D\left(x_{j}, x_{\ell}\right)$ and $\pi\left(x_{i}, x_{k}\right)$ with $j<\ell$ and $i<k$ interlaced (i.e. $i<j<k<\ell$ or $j<i<\ell<k)$;
- $\pi\left(x_{i}, x_{k}\right)=\left(1-x_{i}^{n} x_{k}^{m}\right)$, with $n, m \geq 1$ and $n \wedge m=1$;
- finally, $\left.D \nmid P\right|_{x_{i}=y^{m}, x_{k}=y^{-n}}$ in $\mathbb{Q}(y)[\vec{x}]$ where y is a fresh variable.

Then L is inherently ambiguous.

Idea of proof

Suppose that L is unambiguous. Then S can be written

$$
\begin{gathered}
S=\biguplus_{i=1}^{r}\left(\vec{c}_{i}+P_{i}^{*}\right) \\
S(\vec{x})=\sum_{s=1}^{r} \frac{\vec{x}^{\vec{c}_{s}}}{\prod_{\vec{\rho} \in P_{s}}(1-\vec{x} \vec{\rho})}=\frac{P(\vec{x})}{\left(1-x_{i}^{n} x_{k}^{m}\right) D\left(x_{j}, x_{\ell}\right) \tilde{Q}(\vec{x})}
\end{gathered}
$$

Idea of proof

Suppose that L is unambiguous. Then S can be written

$$
\begin{aligned}
& S=\biguplus_{i=1}^{r}\left(\vec{c}_{i}+P_{i}^{*}\right) \\
& S(\vec{x})=\sum_{s=1}^{r} \frac{\vec{x}^{c_{s}}}{\prod_{\vec{p} \in P_{s}}\left(1-\vec{x}^{\vec{P}}\right)}=\frac{P(\vec{x})}{\left(1-x_{i}^{n} x_{k}^{m}\right) D\left(x_{j}, x_{\ell}\right) \tilde{Q}(\vec{x})} \\
& \sum_{s \in I_{1}}^{r} \frac{\vec{x}_{s} \vec{c}_{s}}{R_{s}(\vec{x})}+\left(1-x_{i}^{n} x_{k}^{m}\right) \sum_{s \in I_{2}}^{r} \frac{\vec{x}^{c_{s}}}{\prod_{\vec{p} \in P_{s}}\left(1-\vec{x}^{\vec{P}}\right)}=\frac{P(\vec{x})}{D\left(x_{j}, x_{\ell}\right) \tilde{Q}(\vec{x})} \\
& \text { with } R_{s}(\vec{x})=\frac{\prod_{\vec{p} \in P_{s}\left(1-\vec{x}^{\vec{P}}\right)}^{\left(1-x_{i}^{n} x_{k}^{m}\right)}}{}
\end{aligned}
$$

Idea of proof

Suppose that L is unambiguous. Then S can be written

$$
\begin{aligned}
& S=\biguplus_{i=1}^{r}\left(\vec{c}_{i}+P_{i}^{*}\right) \\
& S(\vec{x})=\sum_{s=1}^{r} \frac{\vec{x}^{\vec{x}_{s}}}{\prod_{\vec{p} \in P_{s}}(1-\vec{x} \vec{p})}=\frac{P(\vec{x})}{\left(1-x_{i}^{n} x_{k}^{m}\right) D\left(x_{j}, x_{\ell}\right) \tilde{Q}(\vec{x})} \\
& \sum_{s \in I_{1}}^{r} \frac{\vec{x}_{s} \vec{c}_{s}}{R_{s}(\vec{x})}+\left(1-x_{i}^{n} x_{k}^{m}\right) \sum_{s \in I_{2}}^{r} \frac{\vec{x}_{\vec{c}} \overrightarrow{\bar{c}}_{s}}{\Pi_{s}\left(1-\bar{x}^{0}\right)}=\frac{P(\vec{x})}{D\left(x_{j}, x_{e}\right) \tilde{Q}(\vec{x})} \\
& \text { with } R_{s}(\vec{x})=\frac{\prod_{\overrightarrow{\bar{s}} \in_{s}}\left(1-\vec{x}^{\vec{p}}\right)}{\left(1-x_{i}^{x} \times x_{k}^{(N)}\right.} \\
& \sum_{s \in I_{1}}^{r} \frac{\left.\vec{x}^{\vec{c}_{s}}\right|_{x_{i}=y^{m}, x_{k}=y^{-n}}}{\left.R_{s}(\vec{x})\right|_{x_{i}=y^{m}, x_{k}=y^{-n}}}=\frac{\left.P(\vec{x})\right|_{x_{i}=y^{m}, x_{k}=y^{-n}}}{\left.D\left(x_{j}, x_{\ell}\right) \tilde{Q}(\vec{x})\right|_{x_{i}=y^{m}, x_{k}=y^{-n}}}
\end{aligned}
$$

Contradiction.

Examples

$L=\left\{a^{i} b^{j} c^{k} d^{\ell}: i \neq k\right.$ or $\left.j \neq \ell\right\}$ is inherently ambiguous.

$$
\begin{aligned}
& \frac{1}{(1-a)(1-b)(1-c)(1-d)}-\frac{1}{(1-a c)(1-b d)} \\
& =\frac{a b c+a b d+a c d+b c d-a b-2 a c-a d-b c-2 b d-c d+a+b+c+d}{(1-a c)(1-b d)(1-a)(1-b)(1-c)(1-d)}
\end{aligned}
$$

- $D(b, d)=(1-b d), \pi(a, c)=(1-a c)$
- We need to prove that $\left.(1-b d) \nmid P\right|_{a=y, c=1 / y}$
- $\left.P\right|_{a=y, c=1 / y}=\left(y-2+\frac{1}{y}\right)(b d-b-d+1)$
- $(1-b d) \nmid(b d-b-d+1)$.

Examples

$L=\left\{a^{i} b^{j} c^{k} d^{\ell}: i \neq k\right.$ or $\left.j \neq \ell\right\}$ is inherently ambiguous.

$$
\begin{aligned}
& \frac{1}{(1-a)(1-b)(1-c)(1-d)}-\frac{1}{(1-a c)(1-b d)} \\
& =\frac{a b c+a b d+a c d+b c d-a b-2 a c-a d-b c-2 b d-c d+a+b+c+d}{(1-a c)(1-b d)(1-a)(1-b)(1-c)(1-d)}
\end{aligned}
$$

- $D(b, d)=(1-b d), \pi(a, c)=(1-a c)$
- We need to prove that $\left.(1-b d) \nmid P\right|_{a=2, c=1 / 2}$
- $\left.P\right|_{a=2, c=1 / 2}=\frac{1}{2}(b d-b-d-1)$
- $(1-b d) \nmid \frac{1}{2}(b d-b-d-1)$.

Examples

$L_{2}=\left\{a^{i} b^{j} c^{k} d^{\ell}: 3 i \neq 5 k\right.$ ou $\left.2 j \neq 3 \ell\right\}$ is inherently ambiguous.

$$
\begin{aligned}
& \frac{1}{(1-a)(1-b)(1-c)(1-d)}-\frac{1}{\left(1-b^{3} d^{2}\right)\left(1-a^{5} c^{3}\right)} \\
= & \frac{a^{5} b^{3} c^{3} d^{2}-a^{5} c^{3}-b^{3} d^{2}-a b c d+a b c+a b d+a c d+b c d-a b-a c-a d-b c-b d-c d+a+b+c+d}{(1-a)(1-b)(1-c)(1-d)\left(1-b^{3} d^{2}\right)\left(1-a^{5} c^{3}\right)}
\end{aligned}
$$

- $D(b, d)=\left(1-b^{3} d^{2}\right), \pi(a, c)=\left(1-a^{5} c^{3}\right)$
- $\left.P\right|_{a=8, c=1 / 32}=\frac{217}{32}(b d-b-d+1)$
- $\left(1-b^{3} d^{2}\right) \nmid \frac{217}{32}(b d-b-d+1)$.

Conclusion

In this talk, we have seen:

- How to use Ginsburg and Ullian criteria with generating series
- We generalized the 3-variable criterion of [Makarov'21] to bounded languages on words
- And developed a completely new interlacing criterion

Ideas for further work:

- Develop robust tools for infinite ambiguity
- (Un)Decidability of inherent ambiguity for bounded languages?

Inherent infinite ambiguity

For $K \geq 1$, a grammar is K-ambiguous if every generated word has at most K derivations.

A language is inherently infinitely ambiguous if it is not recognized by any finitely ambiguous grammar.

Example: The language of products of palindromes is inherently infinitely ambiguous [Crestin '72].

Idea for further work

1. If L is recognized by a K-ambiguous grammar G, then
a. $\ell_{n} \leq g_{n} \leq K \ell_{n}$
b. $\ell_{n}=\Theta\left(g_{n}\right)$ where g_{n} is \mathbb{N}-algebraic

Example: Shamir's language is infinitely ambiguous

$$
L_{k}=\left\{w \in \Sigma \mid w=s \# u s^{R} v \text { with } s, u, v \in\left\{a_{1}, \ldots, a_{k}\right\}^{*}\right\}
$$

[Shamir 70']: proof for $k=2$ with iteration arguments New proof: we can prove that $\ell_{n}=\Theta\left(k^{n-1} \log _{k}(n)\right)$, which is incompatible with algebraicity.
2. Find a way to detect the inherent K-ambiguity of bounded languages.

Idea for further work

1. If L is recognized by a K-ambiguous grammar G, then
a. $\ell_{n} \leq g_{n} \leq K \ell_{n}$
b. $\ell_{n}=\Theta\left(g_{n}\right)$ where g_{n} is \mathbb{N}-algebraic

Example: Shamir's language is infinitely ambiguous

$$
L_{k}=\left\{w \in \Sigma \mid w=s \# u s^{R} v \text { with } s, u, v \in\left\{a_{1}, \ldots, a_{k}\right\}^{*}\right\}
$$

[Shamir 70']: proof for $k=2$ with iteration arguments New proof: we can prove that $\ell_{n}=\Theta\left(k^{n-1} \log _{k}(n)\right)$, which is incompatible with algebraicity.
2. Find a way to detect the inherent K-ambiguity of bounded languages.

Thank you!

