New analytic techniques for proving the inherent ambiguity of context-free languages

> Florent Koechlin Inria Grand Est, Loria, Nancy, France

> > Séminaire Combalgo, LaBRI January 2023, 24th

Word: finite sequence of letters: ab, ba, ε ,... Formal language: set of words over a finite alphabet Σ . Example 1: $(a + b)^* := \{c_1 \dots c_n : n \in \mathbb{N}, c_i \in \{a, b\}\}$ Example 2: $\{a^n b^n : n \in \mathbb{N}^*\}$ Regular languages are the simplest languages in the Chomsky hierarchy. They are exactly the languages recognized by :

 Regular expressions : Σ*aΣ*, (a + b)*b, Σ*aΣ^{r-1},...
 (Deterministic) finite automata →0 → 1

Context-free languages

Regular languages \subsetneq Context-free languages

Context-free languages are the second-level class of languages in the Chomsky hierarchy. They are exactly the languages recognized by :

- Non-deterministic pushdown automata
- Context-free grammars

$$S \to aSb \mid \varepsilon, \qquad S \to [S]S \mid \varepsilon, \qquad \begin{cases} S \to aSb \mid C \mid cc \\ C \to cC \mid c \end{cases}$$

 $\mathbf{S} \Rightarrow [\mathbf{S}]S \Rightarrow [[\mathbf{S}]S]S \Rightarrow [[]S]S \Rightarrow [[]S]S \Rightarrow [[]S]S \Rightarrow [[][S]S \Rightarrow [[][]S]S \Rightarrow [[][]]S \Rightarrow [[][]S \Rightarrow [[][]]S \Rightarrow [[][]S \Rightarrow [[][]S \Rightarrow [[][]S \Rightarrow [[][S]S \Rightarrow$

 $\{a^n b^n \mid n \in \mathbb{N}\}$ is context-free but not regular

Context-free grammar

 $S \to [S]S \,|\, \varepsilon$

Derivation

 $\mathbf{S} \Rightarrow [\mathbf{S}]S \Rightarrow [[\mathbf{S}]S]S \Rightarrow [[]S]S \Rightarrow [[]S]S \Rightarrow [[][S]S]S \Rightarrow [[][]S]S \Rightarrow [[][]]S \Rightarrow [[][]S \Rightarrow [[][]]S \Rightarrow [[][]S \Rightarrow [[][]S \Rightarrow [[][]S \Rightarrow [[][S]S \Rightarrow [[][S]S$

Context-free grammar

 $S \to [S]S \,|\, \varepsilon$

Derivation

 $\begin{array}{l} S \Rightarrow [S]S \Rightarrow [[S]S]S \Rightarrow [[S]S S \Rightarrow [[S]S S]S \Rightarrow [[S]S S S S \\S S S S S S S S S S S$

Context-free grammar

 $S \to [S]S \,|\, \varepsilon$

Derivation

 $\begin{array}{l} S \Rightarrow [S]S \Rightarrow [[S]S]S \Rightarrow [[S]S S \Rightarrow [[S]S S]S \Rightarrow [[S]S S S S \\S S S S S S S S S S S$

Derivation tree

Unambiguous context-free grammar

Every word in its language has exactly one derivation tree.

Unambiguous context-free languages

deterministic CFL \subsetneq unambiguous CFL \subsetneq non det. CFL

 $\{a^n b^m c^p \mid n = m \text{ or } m = p\}$ is inherently ambiguous

Relevant intermediate model between deterministic and non-deterministic context-free languages.

Finding inherently ambiguous languages is interesting. However:

- c deciding whether a grammar is ambiguous is undecidable [Chomsky-Schützenberger'63]
- c deciding whether a context-free language is inherently ambiguous is undecidable [Ginsburg-Ullian'66, Greibach'68]

Standard methods to prove inherent ambiguity

- Iteration on derivation trees
 By hand or using iteration lemmas (e.g. Ogden's lemma)
- Iteration on semilinear sets
- Generating series
- + closure property : if *R* is regular

L unambiguous $\Rightarrow L \cap R$ unambiguous

 $L \cap R$ inherently ambiguous $\Rightarrow L$ inherently ambiguous

- Suppose that it is recognized by an unambiguous grammar G
- For k sufficiently big, find an iterating pair of a's and b's of same length in a derivation of $a^k b^k c^{k+k!}$

- Suppose that it is recognized by an unambiguous grammar G
- For k sufficiently big, find an iterating pair of a's and b's of same length in a derivation of $a^k b^k c^{k+k!}$

- Suppose that it is recognized by an unambiguous grammar G
- For k sufficiently big, find an iterating pair of a's and b's of same length in a derivation of $a^k b^k c^{k+k!}$

- Suppose that it is recognized by an unambiguous grammar G
- For k sufficiently big, find an iterating pair of a's and b's of same length in a derivation of $a^k b^k c^{k+k!}$

- Suppose that it is recognized by an unambiguous grammar G
- For k sufficiently big, find an iterating pair of a's and b's of same length in a derivation of $a^k b^k c^{k+k!}$

- Suppose that it is recognized by an unambiguous grammar G
- For k sufficiently big, find an iterating pair of a's and b's of same length in a derivation of $a^k b^k c^{k+k!}$
- Derive from it a derivation tree of $a^{k+k!}b^{k+k!}c^{k+k!}$
- Repeat the process from a derivation tree of a^{k+k!}b^kc^k to obtain a different derivation of a^{k+k!}b^{k+k!}c^{k+k!}

Methods by iteration

Advantages:

- can handle simple languages that are unreachable with other techniques
- o usually bring more information than just inherent ambiguity

Drawbacks:

- are too tedious for complex languages
- are too specific for the studied language fail on $\{a^n b^m c^p \mid n \neq m \text{ or } m \neq p\}$

Methods based on generating series

Generating series of a language \mathcal{L} $L(x) = \sum_{w \in L} x^{|w|} = \sum_{n \in \mathbb{N}} \ell_n x^n \qquad \ell_n :$ number of words of length n

Example:
$$(a + b)^* \to \ell_n = 2^n \to L(x) = \sum_n 2^n x^n = \frac{1}{1 - 2x}$$

Example: $\{a^n b^n\} \to \ell_{2n} = 1 \to L(x) = \frac{1}{1 - x^2}$

Theorem [Chomsky-Schützenberger, '63]: The generating series of an unambiguous context-free language is algebraic.

$$P(x,L(x))=0$$

Example: $S \rightarrow [S]S | \varepsilon$ $S(x) = x^2S(x)^2 + 1$

Methods based on generating series

Flajolet's idea: if the series of a context-free language is not algebraic, then it is an inherently ambiguous context-free language.

Proposition [Useful criteria, Flajolet '87]:

Let $L(z) = \sum_{n \in \mathbb{N}} \ell_n z^n$ a series.

- If L(z) has infinitely many singularities, then L(z) is not algebraic.
- If $\ell_n \sim_{n \to \infty} \gamma \beta^n n^r$, with $r \notin \mathbb{Q} \setminus \{-1, -2, -3, \ldots\}$, then L(z) is not algebraic.
- If ℓ_n does not satisfy a linear recurrence with polynomial coefficients in *n*, then L(z) is not algebraic.

Analytic criteria for inherent ambiguity

Theorem [Flajolet '87] $\Omega_3 = \{w \in \{a, b, c\}^* : |w|_a \neq |w|_b \text{ or } |w|_b \neq |w|_c\}$ is inherently ambiguous. Analytic criteria for inherent ambiguity

Theorem [Flajolet '87] $\Omega_3 = \{w \in \{a, b, c\}^* : |w|_a \neq |w|_b \text{ or } |w|_b \neq |w|_c\}$ is inherently ambiguous.

Analytic proof:

• Suppose that $\Omega_3(x)$ is algebraic

• Let
$$I = (a + b + c)^* \setminus \Omega_3$$

- Then $I(x) = \frac{1}{1-3x} \Omega_3(x)$ would be algebraic by closure properties
- But $I = \{w \in \{a, b, c\}^* : |w|_a = |w|_b = |w|_c\}$

$$[x^{3n}]I(x) = {3n \choose n, n, n} = \frac{(3n)!}{(n!)^3} \sim_{n \to \infty} 3^{3n} \frac{\sqrt{3}}{2\pi n}$$

Flajolet's analytic method

Advantages :

 is very powerful : P. Flajolet (re)proved the inherent ambiguity of 15 languages, some of which were conjectures, in only one article

 $\textit{O}_{3},\textit{O}_{4},\Omega_{3},\textit{C},\textit{S},\textit{P}_{1},\textit{P}_{2},\textit{G}_{\neq},\textit{G}_{<},\textit{G}_{>},\textit{G}_{=},\textit{H}_{\neq},\textit{K}_{1},\textit{K}_{2},\textit{B}$

• is robust : it works for both $\Omega_3 = \{ w \in \{a, b, c\}^* : |w|_a \neq |w|_b \text{ or } |w|_b \neq |w|_c \}$ and $O_3 = \{ w \in \{a, b, c\}^* : |w|_a = |w|_b \text{ or } |w|_b = |w|_c \}.$

Remark: $O_3 \cap a^*b^*c^* = \{a^nb^mc^p \text{ with } n = m \text{ or } m = p\}$

Flajolet's analytic method

Advantages :

 is very powerful : P. Flajolet (re)proved the inherent ambiguity of 15 languages, some of which were conjectures, in only one article

 $\textit{O}_{3},\textit{O}_{4},\Omega_{3},\textit{C},\textit{S},\textit{P}_{1},\textit{P}_{2},\textit{G}_{\neq},\textit{G}_{<},\textit{G}_{>},\textit{G}_{=},\textit{H}_{\neq},\textit{K}_{1},\textit{K}_{2},\textit{B}$

• is robust : it works for both $\Omega_3 = \{ w \in \{a, b, c\}^* : |w|_a \neq |w|_b \text{ or } |w|_b \neq |w|_c \}$ and $O_3 = \{ w \in \{a, b, c\}^* : |w|_a = |w|_b \text{ or } |w|_b = |w|_c \}.$

Remark: $O_3 \cap a^*b^*c^* = \{a^nb^mc^p \text{ with } n = m \text{ or } m = p\}$ Drawbacks:

 does not work on too simple languages, whose series are rational; for instance for:

$$\Omega_3 \cap a^* b^* c^* = \{a^n b^m c^p \text{ with } n \neq m \text{ or } m \neq p\}.$$
$$L(x) = \frac{1}{1 - 3x} - \frac{1}{1 - x^3}$$

In this talk

- rational generating series can still be used to handle the inherent ambiguity of many bounded context-free languages
- I will explain how an old result used to derive iteration on semilinear sets can de derived into two useful criteria on series:
 - The 3-variable criterion
 - Re-discover and extension of [Makarov'21]
 - The interlacing criterion

Bounded languages

Main question: can we detect the inherent ambiguity of bounded languages using generating series?

A language L is bounded with respect to $\langle w \rangle := \langle w_1, \dots, w_d \rangle$ if

$$L \subseteq w_1^* \dots w_d^*$$

where $w^* = \{\varepsilon, w, ww, www, \ldots\}$

Example: $\{a^n b^m c^p : \ldots\} \subseteq a^* b^* c^*$

Example: ${(abb)^n(bb)^mc^p : \ldots} \subseteq {(abb)^*(bb)^*c^*}$

Bounded languages

If *L* is bounded with respect to $\langle w \rangle$, let us define:

$$\mathcal{S}_{\langle w \rangle}(L) = \{(i_1, \ldots, i_d) \in \mathbb{N}^d : w_1^{i_1} \ldots w_d^{i_d} \in L\}$$

Example:
$$S_{\langle a,b,c \rangle}(\{a^n b^m c^p : n = m \lor m = p\})$$

= $\{(n,m,p) \in \mathbb{N}^3 : n = m \lor m = p\}$

Proposition [Ginsburg and Ullian, '62]: Every bounded context-free language is semilinear, *i.e.*, $S_{\langle w \rangle}(L)$ is semilinear.

Semilinear sets of \mathbb{N}^d (Parikh 61/66)

Linear set: Set of the form $\vec{c} + P^*$ where $P = \{p_1, \dots, p_r\}$ is called a set of periods, and $P^* = \{\lambda_1 p_1 + \dots + \lambda_r p_r : \lambda_i \in \mathbb{N}\}$

Semilinear set: Finite union of linear sets : $S = \bigcup_{i=1}^{r} \vec{c_i} + P_i^*$

Inherent ambiguity of bounded languages

If *L* is bounded with respect to $\langle w \rangle$:

$$\mathcal{S}_{\langle w \rangle}(L) = \{(p_1, \ldots, p_d) \in \mathbb{N}^d : w_1^{p_1} \ldots w_d^{p_d} \in L\}$$

Theorem [Ginsburg and Ullian, '66]: A bounded context-free language L is unambiguous if and only if $\mathcal{S}_{\langle w \rangle}(L)$ is of the form

$$\mathcal{S}_{\langle w \rangle}(L) = \biguplus_{i=1}^{r} (\vec{c_i} + P_i^*)$$

where:

- the union is disjoint
 the vectors in each P_i are linearly independent
 Eilenberg & Schützenberger, Ito 69] dent

 \circ each P_i is stratified

Stratified set (Ginsburg and Spanier, '66)

A finite subset $X \subseteq \mathbb{N}^d$ is stratified if:

- 1. every vector in X has at most two non-zero coordinates
- 2. no two vectors in X have interlacing non-zero coordinates, *i.e.* there are no $1 \le i < j < m < n \le d$ and two vectors $\vec{x}, \vec{x'} \in X$ such that $x_i x_j x'_m x'_n \ne 0$.

Stratified set (Ginsburg and Spanier, '66)

A finite subset $X \subseteq \mathbb{N}^d$ is stratified if:

- 1. every vector in X has at most two non-zero coordinates
- 2. no two vectors in X have interlacing non-zero coordinates, *i.e.* there are no $1 \le i < j < m < n \le d$ and two vectors $\vec{x}, \vec{x'} \in X$ such that $x_i x_j x'_m x'_n \ne 0$.

$$\left\{ \begin{pmatrix} 1\\2\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1\\2\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}, \left\{ \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\2\\0\\1 \end{pmatrix} \right\}$$

Inherent ambiguity of bounded languages

Corollary: If $S_{\langle w \rangle}(L)$ can not described as a disjoint union of linear set with stratified linearly independent periods then L is inherently ambiguous.

For instance, $\{a^n b^m c^p : n = m \text{ or } m = p\}$ is inherently ambiguous if and only if the set $\{(n, m, p) \in \mathbb{N}^3 : n = m \text{ or } m = p\}$ is not a disjoint union of linear sets whose set of periods is a stratified set of linearly independent vectors.

And $\{a^n b^m c^p : n \neq m \text{ or } m \neq p\}$ is inherently ambiguous if and only if the set $\{(n, m, p) \in \mathbb{N}^3 : n \neq m \text{ or } m \neq p\}$ is not ...

Is it useful?

Theoretic advantages :

- it is an equivalence, that leaves the world of derivation trees
- the proof uses very complicated iteration arguments on derivation trees, so we are thankful!

"The proof of the necessity is extremely complicated"

Practical Drawbacks:

- No practical method to prove that $\mathcal{S}_{\langle w \rangle}(L)$ can not described this way
- it is used in the literature with iteration arguments on semilinear sets: proofs are even trickier than on derivation trees, are too specific, etc.
- hence it has been shadowed by Ogden's Lemma [Ogden '68]

Generating series associated to a semilinear set.

If $S \subseteq \mathbb{N}^d$, then:

$$S(\vec{x}) := \sum_{(v_1, ..., v_d) \in S} x_1^{v_1} \dots x_d^{v_d} = \sum_{\vec{v} \in S} \vec{x}^{\vec{v}}$$

Example: Linear set $(1,1) + \{(1,2), (1,0)\}^*$

$$S(a,b) = \sum_{n,m} a^{1+1n+1m} b^{1+2n+0m} = rac{a^1 b^1}{(1-a^1 b^2)(1-a^1 b^0)}$$

Example: Linear set $\vec{c} + {\vec{p_1}, \ldots, \vec{p_r}}^*$ with independent periods

$$\mathcal{S}(ec{x}) = \sum_{\lambda_1,...,\lambda_r} ec{x}^{ec{c}+\lambda_1ec{p}_1+...+\lambda_rec{p}_r} = rac{ec{x}^{ec{c}}}{\prod_{j=1}^r(1-ec{x}^{ec{p}_j})}$$

Theorem [Eilenberg & Schützenberger, Ito 69]: If S is semilinear, then $S(\vec{x})$ is rational.

It is useful!

Theorem (3-variable criterion [Koechlin 22]) Let $L \subseteq w_1^* \dots w_d^*$ a bounded context-free language with respect to $\langle w \rangle$. Let $S = S_{\langle w \rangle}(L)$ its associated semilinear set. Let us write

$$S(x_1,...,x_d) := \sum_{(i_1,...,i_d) \in S} x_1^{i_1} \dots x_d^{i_d} = \frac{P(x_1,...,x_d)}{Q(x_1,...,x_d)} \in \mathbb{K}(x_1,...,x_d)$$

in irreducible form. Suppose that there exists an irreducible polynomial $D \in \mathbb{K}[x_1, \ldots, x_d]$ dividing Q, such that D has three or more variables.

Then L is inherently ambiguous.

It is useful!

Theorem (3-variable criterion [Koechlin 22]) Let $L \subseteq w_1^* \dots w_d^*$ a bounded context-free language with respect to $\langle w \rangle$. Let $S = S_{\langle w \rangle}(L)$ its associated semilinear set. Let us write

$$S(x_1,...,x_d) := \sum_{(i_1,...,i_d) \in S} x_1^{i_1} \dots x_d^{i_d} = \frac{P(x_1,...,x_d)}{Q(x_1,...,x_d)} \in \mathbb{K}(x_1,...,x_d)$$

in irreducible form. Suppose that there exists an irreducible polynomial $D \in \mathbb{K}[x_1, \ldots, x_d]$ dividing Q, such that D has three or more variables.

Then L is inherently ambiguous.

 \rightarrow It extends and simplifies the proof of a criterion of [Makarov '21]

Proof

Suppose that L is unambiguous. Then S can be written

$$S = \bigcup_{i=1}^{r} (\vec{c_i} + P_i^*)$$

where the union is disjoint, each P_i is stratified, and the vectors in each P_i are linearly independent.

Proof

Suppose that L is unambiguous. Then S can be written

$$S = \bigcup_{i=1}^{r} (\vec{c_i} + P_i^*)$$

where the union is disjoint, each P_i is stratified, and the vectors in each P_i are linearly independent.

Consequently (with $\vec{x}^{\vec{p}} := x_1^{p_1} \dots x_d^{p_d}$):

$$S(\vec{x}) = \sum_{(i_1, \dots, i_d) \in S} x_1^{i_1} \dots x_d^{i_d} = \sum_{i=1}^r \frac{\vec{x}^{\vec{c}_i}}{\prod_{\vec{p} \in P_i} (1 - \vec{x}^{\vec{p}})} = \frac{P_2(\vec{x})}{Q_2(\vec{x})}$$

with $Q_2(\vec{x}) = \prod_{i=1}^r \prod_{\vec{p} \in P_i} (1 - \vec{x}^{\vec{p}})$. Then D divides Q_2 .

Proof

Suppose that L is unambiguous. Then S can be written

$$S = \bigcup_{i=1}^{r} (\vec{c_i} + P_i^*)$$

where the union is disjoint, each P_i is stratified, and the vectors in each P_i are linearly independent.

Consequently (with $\vec{x}^{\vec{p}} := x_1^{p_1} \dots x_d^{p_d}$):

$$S(\vec{x}) = \sum_{(i_1, \dots, i_d) \in S} x_1^{i_1} \dots x_d^{i_d} = \sum_{i=1}^r \frac{\vec{x}^{\vec{c_i}}}{\prod_{\vec{p} \in P_i} (1 - \vec{x}^{\vec{p}})} = \frac{P_2(\vec{x})}{Q_2(\vec{x})}$$

with $Q_2(\vec{x}) = \prod_{i=1}^r \prod_{\vec{p} \in P_i} (1 - \vec{x}^{\vec{p}})$. Then D divides Q_2 .

As each P_i is stratified, Q_2 is a product of polynomials with at most 2 variables. Hence *D* cannot divide Q_2 . Contradiction.

Examples [Makarov '21]

1.
$$\{a^n b^m c^p \text{ with } n \neq m \text{ or } m \neq p\}$$
 is inherently ambiguous :

Examples [Makarov '21]

2. $\{a^n b^m c^p \text{ with } n = m \text{ or } m = p\}$ is inherently ambiguous :

$$\frac{1}{(1-ab)(1-c)} + \frac{1}{(1-bc)(1-a)} - \frac{1}{1-abc}$$

= $\frac{1-3a^2b^2c^2+2a^2b^2c+2ab^2c^2+2a^2bc-ab^2c+2abc^2-a^2b+2abc-bc^2-ac}{(1-a)(1-bc)(1-c)(1-abc)}$

3. $\{a^n b^m c^p \text{ with } n = m \text{ or } m \neq p\}$ is inherently ambiguous :

$$\frac{1}{(1-a)(1-b)(1-c)} - \left(\frac{1}{(1-a)(1-bc)} - \frac{1}{1-abc}\right)$$
$$= \frac{3ab^2c^2 - 2ab^2c - 2abc^2 - b^2c^2 + b^2c + bc^2 + ab + ac - 2bc - a + 1}{(1-a)(1-b)(1-c)(1-bc)(1-abc)}$$

Allowing non-distinct symbols: example of primitive words

Primitive words: words that are not the power of a smaller word

$$\mathcal{P} = \{ w \in \Sigma^* : \forall u \in \Sigma^*, (w \in u^* \Rightarrow u = w) \}$$

 $aaba \in \mathcal{P}$, $abab \notin \mathcal{P}$

Theorem [Petersen '94]: \mathcal{P} is not an unambiguous context-free language.

Recall: $\mathcal{P} \cap R$ inherently ambiguous $\Rightarrow \mathcal{P}$ inherently ambiguous

New elementary proof:

Let \mathcal{G} the set of words in $\{\leftarrow, \rightarrow, \swarrow, \nearrow\}^*$ describing a walk starting at (0, 0) and staying in the quarter-plane.

Then $\overline{\mathcal{G}} = \{\leftarrow, \rightarrow, \swarrow, \nearrow\}^* \setminus \mathcal{G}$ is inherently ambiguous.

Proof: $\overline{\mathcal{G}} \cap (\nearrow)^* \to \checkmark^* \checkmark^*$ is inherently ambiguous.

The associated semilinear is $C = \{(n, m, p) | n .$

Then $\overline{\mathcal{G}} = \{\leftarrow, \rightarrow, \swarrow, \nearrow\}^* \setminus \mathcal{G}$ is inherently ambiguous.

Proof: $\overline{\mathcal{G}} \cap (\nearrow \leftarrow)^* \to \checkmark^* \checkmark^*$ is inherently ambiguous. The associated semilinear is $C = \{(n, m, p) \mid n .$

$$S(a, b, c) = \frac{1}{(1-a)(1-b)(1-c)} - \frac{1}{(1-abc)(1-ab)(1-b)} - \frac{a}{(1-abc)(1-ab)(1-a)}$$
$$= \frac{(1-ab)c}{(1-c)(1-a)(1-b)(1-abc)}$$

Then $\overline{\mathcal{G}} = \{\leftarrow, \rightarrow, \swarrow, \nearrow\}^* \setminus \mathcal{G}$ is inherently ambiguous.

Proof: $\overline{\mathcal{G}} \cap (\nearrow \leftarrow)^* \to \checkmark^* \checkmark^*$ is inherently ambiguous. The associated semilinear is $C = \{(n, m, p) \mid n .$

$$S(a, b, c) = \frac{1}{(1-a)(1-b)(1-c)} - \frac{1}{(1-abc)(1-ab)(1-b)} - \frac{a}{(1-abc)(1-ab)(1-a)}$$
$$= \frac{(1-ab)c}{(1-c)(1-a)(1-b)(1-abc)}$$

Open question: G(x) is algebraic but not \mathbb{N} -algebraic ([Bostan and Kauers, '10], [Banderier and Drmota, '13]). Can we directly prove that $\frac{1}{1-4x} - G(x)$ is not \mathbb{N} -algebraic?

Other examples

- $\{a^n b^m c^p : p \ge n \text{ or } p \ge m\}$
- Product of palindroms $C = \{w_1w_2 : w_1, w_2 \in \{a, b\}^* \text{ are palindromes}\}$
- The complement of every non-singular walk with small steps on the quarter plane is an inherently ambiguous context-free language. [Koe 22]
- And many many other!
- $\circ \ O_{3}, O_{4}, \Omega_{3}, C, S, P_{1}, P_{2}, \textbf{\textit{G}}_{\neq}, \textbf{\textit{G}}_{<}, \textbf{\textit{G}}_{>}, \textbf{\textit{G}}_{=}, \textbf{\textit{H}}_{\neq}, \textbf{\textit{K}}_{1}, \textbf{\textit{K}}_{2}, \textbf{\textit{B}}$

Limits of this criterion

Advantages :

- is recent
- is robust
- is quick

Drawbacks :

- only for bounded languages*
- this first criterion only deals with the first condition of stratified sets, fails with inherent ambiguity due to interlacing vectors

$$\rightarrow$$
 fails on $\{a^n b^m c^p d^q \mid n = p \text{ or } m = q\}$

$$\frac{1}{(1-ac)(1-b)(1-d)} + \frac{1}{(1-bd)(1-a)(1-c)} - \frac{1}{(1-ac)(1-bd)} = \frac{1-ab-ac-ad-bc-bd-cd+2abc+2abd+2acd+2bcd-3abcd}{(1-ac)(1-bd)(1-a)(1-b)(1-c)(1-d)}$$

Second criterion

Problem: We need a way to distinguish that (1 - bd)(1 - ac) is bad for $\{a^n b^m c^p d^q \mid n = p \text{ or } m = q\}$

$$\frac{1 - ab - ac - ad - bc - bd - cd + 2 abc + 2 abd + 2 acd + 2 bcd - 3 abcd}{(1 - ac)(1 - bd)(1 - a)(1 - b)(1 - c)(1 - d)}$$

but is not bad in the series of $\{a^nc^n\,:\,n\geq 0\}\cup\{b^nd^n\,:\,n\geq 0\}$:

$$\frac{1}{1 - ac} + \frac{1}{1 - bd} - 1 = \frac{1 - abcd}{(1 - ac)(1 - bd)}$$

In other words, find a way to prove that they were in a same set of periods.

Targeting the interlacing condition

Theorem (interlacing criterion [Koechlin 22]) Let $L \subseteq w_1^* \dots w_d^*$ a bounded context-free language with respect to $\langle w \rangle$. Let $S = S_{\langle w \rangle}(L)$ its associated semilinear set. Let us write in irreducible form

$$S(x_1,\ldots,x_d)=\frac{P(x_1,\ldots,x_d)}{Q(x_1,\ldots,x_d)}=\frac{P(\vec{x})}{(1-x_i^n x_k^m)D(x_j,x_\ell)\tilde{Q}(\vec{x})}$$

Suppose that

• *Q* is divided by two non-univariate irreducible polynomials $D(x_j, x_\ell)$ and $\pi(x_i, x_k)$ with $j < \ell$ and i < k interlaced (i.e. $i < j < k < \ell$ or $j < i < \ell < k$);

• $\pi(x_i, x_k) = (1 - x_i^n x_k^m)$, with $n, m \ge 1$ and $n \land m = 1$;

• finally, $D \nmid P|_{x_i=y^m, x_k=y^{-n}}$ in $\mathbb{Q}(y)[\vec{x}]$ where y is a fresh variable. Then L is inherently ambiguous.

Idea of proof

Suppose that L is unambiguous. Then S can be written

$$S = \bigoplus_{i=1}^{r} (\vec{c_i} + P_i^*)$$
$$S(\vec{x}) = \sum_{s=1}^{r} \frac{\vec{x}^{\vec{c}_s}}{\prod_{\vec{p} \in P_s} (1 - \vec{x}^{\vec{p}})} = \frac{P(\vec{x})}{(1 - x_i^n x_k^m) D(x_j, x_\ell) \tilde{Q}(\vec{x})}$$

Idea of proof

Suppose that L is unambiguous. Then S can be written

$$\begin{split} S &= \biguplus_{i=1}^{r} (\vec{c_i} + P_i^*) \\ S(\vec{x}) &= \sum_{s=1}^{r} \frac{\vec{x}^{\vec{c}_s}}{\prod_{\vec{p} \in P_s} (1 - \vec{x}^{\vec{p}})} = \frac{P(\vec{x})}{(1 - x_i^n x_k^m) D(x_j, x_\ell) \tilde{Q}(\vec{x})} \\ &\sum_{s \in I_1}^{r} \frac{\vec{x}^{\vec{c}_s}}{R_s(\vec{x})} + (1 - x_i^n x_k^m) \sum_{s \in I_2}^{r} \frac{\vec{x}^{\vec{c}_s}}{\prod_{\vec{p} \in P_s} (1 - \vec{x}^{\vec{p}})} = \frac{P(\vec{x})}{D(x_j, x_\ell) \tilde{Q}(\vec{x})} \\ &\text{with } R_s(\vec{x}) = \frac{\prod_{\vec{p} \in P_s} (1 - \vec{x}^{\vec{p}})}{(1 - x_i^n x_k^m)} \end{split}$$

Idea of proof

Suppose that L is unambiguous. Then S can be written

$$S = \biguplus_{i=1}^{r} (\vec{c_i} + P_i^*)$$

$$S(\vec{x}) = \sum_{s=1}^{r} \frac{\vec{x}^{\vec{c}_s}}{\prod_{\vec{p} \in P_s} (1 - \vec{x}^{\vec{p}})} = \frac{P(\vec{x})}{(1 - x_i^n x_k^m) D(x_j, x_\ell) \tilde{Q}(\vec{x})}$$

$$\sum_{s \in I_1}^{r} \frac{\vec{x}^{\vec{c}_s}}{R_s(\vec{x})} + (1 - x_i^n x_k^m) \sum_{s \in I_2}^{r} \frac{\vec{x}^{\vec{c}_s}}{\prod_{\vec{p} \in P_s} (1 - \vec{x}^{\vec{p}})} = \frac{P(\vec{x})}{D(x_j, x_\ell) \tilde{Q}(\vec{x})}$$
with $R_s(\vec{x}) = \frac{\prod_{\vec{p} \in P_s} (1 - \vec{x}^{\vec{p}})}{(1 - x_i^n x_k^m)}$

$$\sum_{s \in I_1}^{r} \frac{\vec{x}^{\vec{c}_s}|_{x_i = y^m, x_k = y^{-n}}}{R_s(\vec{x})|_{x_i = y^m, x_k = y^{-n}}} = \frac{P(\vec{x})|_{x_i = y^m, x_k = y^{-n}}}{D(x_j, x_\ell) \tilde{Q}(\vec{x})|_{x_i = y^m, x_k = y^{-n}}}$$

Contradiction.

$$L = \{a^i b^j c^k d^\ell : i \neq k \text{ or } j \neq \ell\}$$
 is inherently ambiguous.

$$\frac{1}{(1-a)(1-b)(1-c)(1-d)} - \frac{1}{(1-ac)(1-bd)} = \frac{abc+abd+acd+bcd-ab-2ac-ad-bc-2bd-cd+a+b+c+d}{(1-ac)(1-bd)(1-a)(1-b)(1-c)(1-d)}$$

- $D(b,d) = (1-bd), \pi(a,c) = (1-ac)$
- $\circ~$ We need to prove that $(1-\mathit{bd}) \nmid \mathit{P}|_{\mathit{a=y,c=1/y}}$
- $P|_{a=y,c=1/y} = (y-2+\frac{1}{y})(bd-b-d+1)$ • $(1-bd) \nmid (bd-b-d+1).$

 $L = \{a^i b^j c^k d^\ell : i \neq k \text{ or } j \neq \ell\}$ is inherently ambiguous.

$$\frac{\frac{1}{(1-a)(1-b)(1-c)(1-d)} - \frac{1}{(1-ac)(1-bd)}}{\frac{abc+abd+acd+bcd-ab-2ac-ad-bc-2bd-cd+a+b+c+d}{(1-ac)(1-bd)(1-a)(1-b)(1-c)(1-d)}}$$

- $D(b,d) = (1-bd), \pi(a,c) = (1-ac)$
- We need to prove that $(1 bd)
 mid P|_{a=2,c=1/2}$
- $P|_{a=2,c=1/2} = \frac{1}{2}(bd b d 1)$ • $(1 - bd) \nmid \frac{1}{2}(bd - b - d - 1).$

 $L_2 = \{a^i b^j c^k d^\ell : 3i \neq 5k \text{ ou } 2j \neq 3\ell\}$ is inherently ambiguous.

$$\frac{1}{(1-a)(1-b)(1-c)(1-d)} - \frac{1}{(1-b^3d^2)(1-a^5c^3)} = \frac{a^5b^3c^3d^2 - a^5c^3 - b^3d^2 - abcd + abcd + abd + acd + bcd - ab - ac - ad - bc - bd - cd + a + b + c + d}{(1-a)(1-b)(1-c)(1-d)(1-b^3d^2)(1-a^5c^3)}$$

D(b, d) = (1 − b³d²), π(a, c) = (1 − a⁵c³)
P|_{a=8,c=1/32} = ²¹⁷/₃₂(bd − b − d + 1)
(1 − b³d²) ∤ ²¹⁷/₃₂(bd − b − d + 1).

Conclusion

In this talk, we have seen:

- How to use Ginsburg and Ullian criteria with generating series
- We generalized the 3-variable criterion of [Makarov'21] to bounded languages on words
- And developed a completely new interlacing criterion

Ideas for further work:

- Develop robust tools for infinite ambiguity
- (Un)Decidability of inherent ambiguity for bounded languages?

Inherent infinite ambiguity

For $K \ge 1$, a grammar is K-ambiguous if every generated word has at most K derivations.

A language is inherently infinitely ambiguous if it is not recognized by any finitely ambiguous grammar.

Example: The language of products of palindromes is inherently infinitely ambiguous [Crestin '72].

Idea for further work

1. If L is recognized by a K-ambiguous grammar G, then

a. $\ell_n \leq g_n \leq K \ell_n$ b. $\ell_n = \Theta(g_n)$ where g_n is \mathbb{N} -algebraic

Example: Shamir's language is infinitely ambiguous

$$L_k = \{ w \in \Sigma \mid w = s \# us^R v \text{ with } s, u, v \in \{a_1, \ldots, a_k\}^* \},$$

[Shamir 70']: proof for k = 2 with iteration arguments New proof: we can prove that $\ell_n = \Theta(k^{n-1}\log_k(n))$, which is incompatible with algebraicity.

2. Find a way to detect the inherent *K*-ambiguity of bounded languages.

Idea for further work

1. If L is recognized by a K-ambiguous grammar G, then

a. $\ell_n \leq g_n \leq K \ell_n$ b. $\ell_n = \Theta(g_n)$ where g_n is \mathbb{N} -algebraic

Example: Shamir's language is infinitely ambiguous

$$L_k = \{ w \in \Sigma \mid w = s \# us^R v \text{ with } s, u, v \in \{a_1, \ldots, a_k\}^* \},$$

[Shamir 70']: proof for k = 2 with iteration arguments New proof: we can prove that $\ell_n = \Theta(k^{n-1}\log_k(n))$, which is incompatible with algebraicity.

2. Find a way to detect the inherent *K*-ambiguity of bounded languages.

Thank you!