Block gluing distance in Hom shifts
Walk reconfiguration distance in graphs

Silvére Gangloff, Benjamin Hellouin de Menibus, Piotr Opocha

LISN, Université Paris Saclay
GT Combinatoire et Interactions, Bordeaux

Dédié a la mémoire de
loannis (Yannis) Manoussakis
décédé le 5 juin 2021

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 1/21

Subshifts

</ afinite alphabet (I, @ and later a,b);
72 the grid to be coloured;
/" the finite patterns;
4% the infinite configurations.

[
]]
d=2, 7 ={mm g o N

Subshift of finite type (SFT): the set of configurations avoiding a finite set of
forbidden patterns.

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 2/21

Hom shifts

Let G be an undirected graph.
The Hom shift Xg is the set of morphisms yiye)

H N
O - gy

Hom shifts are subshifts with adjacency constraints and invariant by
rotation and symmetry.
ex: Xk, are the k-colourings of Z2.

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 3/21

Why do we like Hom shifts?

S T

> Natural definition (invariance by isometry) with a physical meaning;
> Well-studied examples (hard square, colourings, square ice);

> No embedding of computation — no (known) undecidable problems;
» Highly nontrivial problems and rich combinatorics.

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 4/21

Block-gluing distance in Hom shifts

Take two valid n x n patterns. Can we glue them together and complete them
into a valid configuration? J

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 5/21

Block-gluing distance in Hom shifts

Take two valid n x n patterns. If they are far enough, can we glue them
together and complete them into a valid configuration? J

Block-gluing distance

ya(n) is the minimum distance such that this is possible for all n x n patterns.

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 5/21

Walk reconfiguration distance in graphs

Two walks x and y of length nin G are at distance 1 if x; and y; are

neighbours in G for every i. J
X = Xo | X1 | X2 | X3 | X4 | X5 | Xg | X7 | X8 | X9 | X10 ‘
y= ‘ Yo i | Ye | Ys | Ya | Y5 | Ve | Y7 | Y8 | Yo |Yio

Walk reconfiguration distance

ya(n) is the maximal distance between two walks of length nin G.

/\ nis not the size of the graph!

Claim: it is the same y g as before.

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 6/21

Warmup

For any connected graph G, ya(n) = O(n).

Up

Uy

uz

us

Uy

Vo

17

A

7]

V3

V4

Benjamin Hellouin (Paris-Saclay)

Blok-gluing in Hom shifts

7/21

Warmup

For any connected graph G, ya(n) = O(n).

‘ Up U4 Uo us Uy
‘ a Up Uq uo us ‘
for any walk
u—-a-b-vsinG.
Vo V4 Vo V3 V4

Warmup

For any connected graph G, ya(n) = O(n).

Up U4 Uo us Uy
a | U | U | U2 | U
b | a |l U | W
V4 | b | a | U | U
V3 | V4| b a | W
Vo | V3 | Va | b a
Vi | Vo | V3 | V4 | Db
Vo V4 Vo V3 V4

Benjamin Hellouin (Paris-Saclay)

Blok-gluing in Hom shifts

for any walk
u—-a-b-vsinG.

7/21

Part Il

The square-free case: Chandgotia & Marcus

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 8/21

Trees

When Gis a tree, yg(n) = O(1). ‘ a Q °

a

b

e

f

e

d

Benjamin Hellouin (Paris-Saclay)

Blok-gluing in Hom shifts

9/21

Trees

(9)
When Gis a tree, yg(n) = O(1). l a Q ° G c

N

Step 1: shift right.

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 9/21

Trees

When Gis a tree, yg(n) = O(1).

al|lblcl|le| f|le]jc|d|c]|Db

\b®b c ef(c)e c(b)o

Step 1: shift right and replace a— ¢, f— ¢, d — b.

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 9/21

Trees

AN
/

Step 1: shift right and replace a— ¢, f— ¢, d — b.
Step 2: shift left and replace e — b.

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 9/21

Trees

AN
/

Step 1: shift right and replace a— ¢, f— ¢, d — b.
Step 2: shift left and replace e — b.
Every walk is at constant distance from a trivial walk.

still works if G has one loop.

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 9/21

Characterisation for the square-free case

Theorem (Chandgotia, Marcus 18)

If G is square-free, then yg =0(n) or ©(1).
The latter is when G is a tree with < 1 loop.

Square-free : if xg — X1 — X2 — X3 — Xp, then xz = x1 or xg = Xo.

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 10/21

Universal cover

Universal cover % e

Smallest tree with a surjective morphism % g — G @‘0

(that “has the same neighbourhoods”).

— - @O - (- -

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 11/21

Universal cover

Universal cover % e

Smallest tree with a surjective morphism %g — G e.@

(that “has the same neighbourhoods”).

a b ¢ a b c a b c
T @A)

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 11/21

Universal cover

Universal cover % ¢ a

Smallest tree with a surjective morphism %g — G e.@

(that “has the same neighbourhoods”).

C Cc a b Cc

a b a b
— @@ OO
a

acba acb ac ab abc abcaabcab ---

Concrete construction

Choose an abitrary vertex in G (say, a).
Vertices of % g correspond to walks with no backtrack in G starting from a.

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 11/21

Lifting

From G to its universal cover

If G is square-free, any colouring x € Xg lifts to a colouring of X, that maps to
X.

Assign the empty walk (0) to any point, then choose the only possiblity.

a b

(2D OO0

a b c

b c

Benjamin Hellouin (Paris-Saclay)

al|bl|ajlc b 0| 1 0o|-1]-2
b|c | blajc 1 2 | 1 0| -1
c b c b a — 2 1 2 1 0
alc aj|c|b 3 /2|3 2 1
b|lalc| b | a 4 3 | 2 |1 0

Blok-gluing in Hom shifts

12/21

Lifting

Why can’t two paths with the same origin and destination reach different
vertices in %g?

X3

X0

X2

X1

If G is square-free, then x3 = x1 or xp = xo.

— XoX1XoX3Xp is a backtracking (= trivial) cycle.

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 13/21

Lifting

Why can’t two paths with the same origin and destination reach different
vertices in %g?

If Gis square-free, every cycle in Xg is a backtracking (= trivial) cycle.

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 13/21

The square-free case

Theorem (Chandgotia, Marcus 18)

If G is square-free and |%g| = +o0, then yg = 0(n).

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 14/21

The square-free case

Theorem (Chandgotia, Marcus 18)

If G is square-free and |% | = +o0, then yg = O(n).

Distance between the “furthest possible” walk and a trivial walk.

lift
d —_—

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 14/21

The square-free case

Theorem (Chandgotia, Marcus 18)

If G is square-free and |% | = +o0, then yg = O(n).

Distance between the “furthest possible” walk and a trivial walk.

n

lift
d —_—

k is at distance < d from 0 and n (in %g) so d = n/2.
Blok-gluing in Hom shifts 14/21

The square-free case

Theorem (Chandgotia, Marcus 18)

If G is square-free and |%g| = +oo, then yg = O(n).

Two behaviours for yg in square-free graphs:
> O(1) if Gis a tree with up to one loop;
> ©(n) in general.

Pavlov and Marcus conjectured that these are the only possible behaviours.

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts

14/21

Part IlI

The squareful case: our contribution

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 15/21

Fixing the universal cover

If G has squares, lifting to the universal cover fails.

DEIF
O

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts

16/21

The square cover

Square cover of G

%g is obtained from % by identifying vertices that are equal up to a square.

°° “e (@O

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 17/21

The square cover

Square cover of G

%g is obtained from % by identifying vertices that are equal up to a square.

a'e %g Q'e

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 17/21

The square cover

Square cover of G
%g is obtained from % by identifying vertices that are equal up to a square.

g‘ (4) D G‘Q

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 17/21

The square cover

From G to its universal cover

If G is square-free, any colouring x € Xg lifts to a colouring of X, that maps to
X.

Theorem (Chandgotia, Marcus 18)

If G is square-free and |% | = +oo, then yg = ©(n).

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 18/21

The square cover

From G to its universal cover
If G is square-free, any colouring x € Xg lifts to a colouring of X, that maps to
X.

v

From G to its square cover
Any colouring x € Xg lifts to a colouring of X%g that maps to x.

V

Theorem (Chandgotia, Marcus 18)

If G is square-free and |% | = +oo, then yg = ©(n).

Theorem (Gangloff, H., Opocha 22)
If |%G| = +oo, then yg = ©(n).

What happens when |%g| < +00?

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 18/21

A worst-case logarithmic bound

Theorem (Gangloff, H., Opocha 22)
If |%5| < +o0, then yg = O(logn).

Lift to %g’ and consider a cycle ¢”.
¢ can be decomposed into squares in the following sense:

(1) (ii) (i)

Ci Ci Civ1 .

: /7 [:I , Ci Cit1i s
7’ a 7’ ’ a b

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts

19/21

A worst-case logarithmic bound

Theorem (Gangloff, H., Opocha 22)

If |G| < +oo, then yg = O(log n).

Lift to %g and consider a cycle ¢”.
¢ can be decomposed into squares in the following sense:

()
c Co Cq Co C3 Co Cq Co C3 Co Cq Co
2 0
IO BDEIOE BICIOE
’ a

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 19/21

A worst-case logarithmic bound

Theorem (Gangloff, H., Opocha 22)

If |%5| < +o0, then yg = O(logn).

Lift to %g’ and consider a cycle ¢”.
¢ can be decomposed into squares in the following sense:

(i)

C|C |G| C3|C|C |C | C3]|C | C | C
ci Co

Seele @@ el @

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 19/21

A worst-case logarithmic bound

Theorem (Gangloff, H., Opocha 22)

If |%5| < +o0, then yg = O(logn).

Lift to 02/5’ and consider a cycle ¢”.
¢ can be decomposed into squares in the following sense:

(iif)

) Cho | C | C C3|C | C | C | C3]|C|C | C
Ci Co
Cq Co Cc3 Co Cq @@ Co Cc3 Co Cq
a b

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts

19/21

A worst-case logarithmic bound

Theorem (Gangloff, H., Opocha 22)
If |%5| < +o0, then yg = O(logn).

Lift to %g and consider a cycle ¢”.
¢ can be decomposed into squares in the following sense:

| efefelele]lel]e]
(iif)] c | c | c | c-O c | c | c ‘
ci C2 ’
/—D_/ ’ c c C |ababababl c c c ‘
" a »p c c-0O c |abab| c c-0O c

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts

19/21

The Ken-no-Katabami graph

(Thanks to Jan van der Heuvel)

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 20/21

The Ken-no-Katabami graph

Theorem

(Gangloff, H., Opocha 22)

ya(n) = ©(logn) for the
Ken-no-Katabami graph.

Critical walk: (abcdef)" is at
distance log n from a trivial cycle.

Key property: cycles at distance 1
from abcdef are all larger, so
nothing can be done in parallel.

(Thanks to Jan van der Heuvel)

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 20/21

Conclusion

There are three possible behaviours for yg:
> ©(n): infinite square cover.
> O(1): every cycle can be square-decomposed through smaller cycles.
> O(logn): some cycle cannot be square-decomposed in this way.

Open questions:
> Intermediate behaviour between ©(logn) —©(1) ?

> What about higher-dimensional Hom shifts? Is there a logarithmic case?

Work in progress (with Chandgotia, Gangloff, Oprocha)

The cases ©(n) and O(logn) are computably unseparable.

Benjamin Hellouin (Paris-Saclay) Blok-gluing in Hom shifts 21/21

	Tiling space and Hom shifts
	The square-free case: Chandgotia & Marcus
	The squareful case: our contribution

