Block gluing distance in Hom shifts
Walk reconfiguration distance in graphs

Silvère Gangloff, Benjamin Hellouin de Menibus, Piotr Opocha

LISN, Université Paris Saclay
GT Combinatoire et Interactions, Bordeaux

Dédié à la mémoire de
Ioannis (Yannis) Manoussakis
décédé le 5 juin 2021
Subshifts

\(\mathcal{A} \) a finite alphabet \((\square, ■) \text{ and later } a, b)\);
\(\mathbb{Z}^2 \) the grid to be coloured;
\(\mathcal{A}^\ast \) the finite patterns;
\(\mathcal{A}^{\mathbb{Z}^d} \) the infinite configurations.

\(d = 2, \mathcal{F} = \{■■; ■\} \):

Subshift of finite type (SFT): the set of configurations avoiding a finite set of forbidden patterns.
Hom shifts

Let G be an undirected graph. The **Hom shift** X_G is the set of morphisms $\mathbb{Z}^2 \to G$.

Hom shifts are subshifts with **adjacency constraints** and **invariant by rotation and symmetry**.

ex: X_{K_k} are the k-colourings of \mathbb{Z}^2.
Why do we like Hom shifts?

\[G = \begin{array}{c}
\square \\
\text{\hspace{0.5cm}}
\end{array} \begin{array}{c}
\mathbb{C} \\
\text{\hspace{0.5cm}}
\end{array} \begin{array}{c}
\bullet
\end{array} \hspace{2cm} \rightarrow \hspace{2cm} X_G = \begin{array}{|c|c|c|c|c|c|c|c|}
\hline
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array} \]

- Natural definition (invariance by isometry) with a physical meaning;
- Well-studied examples (hard square, colourings, square ice);
- No embedding of computation \rightarrow no (known) undecidable problems;
- Highly nontrivial problems and rich combinatorics.
Take two valid $n \times n$ patterns. Can we glue them together and complete them into a valid configuration?
Block-gluing distance in Hom shifts

Take two valid $n \times n$ patterns. If they are far enough, can we glue them together and complete them into a valid configuration?

$\gamma_G(n)$ is the minimum distance such that this is possible for all $n \times n$ patterns.
Two walks x and y of length n in G are at distance 1 if x_i and y_i are neighbours in G for every i.

$x = \begin{array}{cccccccccc}
 x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9 & x_{10} \\
y = \begin{array}{cccccccccc}
 y_0 & y_1 & y_2 & y_3 & y_4 & y_5 & y_6 & y_7 & y_8 & y_9 & y_{10}
\end{array}
\end{array}$

Walk reconfiguration distance

$\gamma_G(n)$ is the maximal distance between two walks of length n in G.

⚠️ n is not the size of the graph!

Claim: it is the same γ_G as before.
Warmup

Theorem

For any connected graph G, $\gamma_G(n) = O(n)$.
For any connected graph G, $\gamma_G(n) = O(n)$.

For any walk $u_0 - a - b - v_4$ in G.

\begin{align*}
&\begin{array}{cccc}
u_0 & u_1 & u_2 & u_3 & u_4 \\
a & u_0 & u_1 & u_2 & u_3 \\
\end{array}
&\begin{array}{cccc}
v_0 & v_1 & v_2 & v_3 & v_4 \\
\end{array}
\end{align*}
Theorem

For any connected graph G, $\gamma_G(n) = O(n)$.

for any walk $u_0 - a - b - v_4$ in G.
Part II

The square-free case: Chandgotia & Marcus
Theorem

When G is a tree, $\gamma_G(n) = O(1)$.

![Tree diagram]

Every walk is at constant distance from a trivial walk.

Still works if G has one loop.
Theorem

When G is a tree, $\gamma_G(n) = O(1)$.

Step 1: shift right.
Theorem

When G is a tree, $\gamma_G(n) = O(1)$.

Step 1: shift right and replace $a \rightarrow c$, $f \rightarrow c$, $d \rightarrow b$.
Theorem
When G is a tree, $\gamma_G(n) = O(1)$.

Step 1: shift right and replace $a \rightarrow c$, $f \rightarrow c$, $d \rightarrow b$.

Step 2: shift left and replace $e \rightarrow b$.

Every walk is at constant distance from a trivial walk.

Still works if G has one loop.
Theorem

When G is a tree, $\gamma_G(n) = O(1)$.

Step 1: shift right and replace $a \to c$, $f \to c$, $d \to b$.

Step 2: shift left and replace $e \to b$.

Every walk is at constant distance from a trivial walk.

still works if G has one loop.
Characterisation for the square-free case

Theorem (Chandgotia, Marcus 18)

If G is square-free, then $\gamma_G = \Theta(n)$ or $\Theta(1)$. The latter is when G is a tree with ≤ 1 loop.

Square-free: if $x_0 - x_1 - x_2 - x_3 - x_0$, then $x_3 = x_1$ or $x_0 = x_2$.
Universal cover \mathcal{U}_G

Smallest tree with a surjective morphism $\mathcal{U}_G \rightarrow G$
(that “has the same neighbourhoods”).

\[\rightarrow \quad a \quad b \quad c \quad a \quad b \quad c \quad a \quad b \quad c \quad \ldots \]
Universal cover \mathcal{U}_G

Smallest tree with a surjective morphism $\mathcal{U}_G \to G$ (that “has the same neighbourhoods”).

Concrete construction

Choose an arbitrary vertex in G (say, a).

Vertices of \mathcal{U}_G correspond to walks with no backtrack in G starting from a.

\[
\begin{array}{cccccccc}
 & a & b & c & a & b & c & a & b & c \\
-3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & \ldots
\end{array}
\]
Universal cover \mathcal{U}_G

Smallest tree with a surjective morphism $\mathcal{U}_G \to G$ (that “has the same neighbourhoods”).

Concrete construction

Choose an arbitrary vertex in G (say, a).

Vertices of \mathcal{U}_G correspond to walks with no backtrack in G starting from a.
Lifting

From G to its universal cover

If G is square-free, any colouring $x \in X_G$ lifts to a colouring of X_{U_G} that maps to x.

Assign the empty walk (0) to any point, then choose the only possibility.

\[
\begin{array}{cccccc}
 a & b & c & a & b & c \\
 -3 & -2 & -1 & 0 & 1 & 2 \\
\end{array}
\]

\[
\begin{array}{cccccc}
 a & b & a & c & b & a \\
 b & c & b & a & c & b \\
 c & b & c & b & a & c \\
 a & c & a & c & b & a \\
 b & a & c & b & a & c \\
\end{array}
\]

\[
\begin{array}{cccccc}
 0 & 1 & 0 & -1 & -2 \\
 1 & 2 & 1 & 0 & -1 \\
 2 & 1 & 2 & 1 & 0 \\
 3 & 2 & 3 & 2 & 1 \\
 4 & 3 & 2 & 1 & 0 \\
\end{array}
\]
Lifting

Why is this working?

Why can’t two paths with the same origin and destination reach different vertices in U_G?

If G is square-free, then $x_3 = x_1$ or $x_0 = x_2$.

$\rightarrow x_0 x_1 x_2 x_3 x_0$ is a **backtracking** (= trivial) cycle.
Why is this working?

Why can’t two paths with the same origin and destination reach different vertices in \mathcal{U}_G?

If G is square-free, every cycle in X_G is a **backtracking** (= trivial) cycle.
The square-free case

Theorem (Chandgotia, Marcus 18)

If G is square-free and $|\mathcal{U}_G| = +\infty$, then $\gamma_G = \Theta(n)$.
The square-free case

Theorem (Chandgotia, Marcus 18)

If G is square-free and $|\mathcal{U}_G| = +\infty$, then $\gamma_G = \Theta(n)$.

Distance between the “furthest possible” walk and a trivial walk.

\[
\begin{array}{c c c}
\text{a} & \text{b} & \text{c} \\
\text{a} & \text{b} & \text{c} \\
\hdashline
\text{a} & \text{b} & \text{a} & \text{b} & \text{a} & \text{b} \\
\end{array}
\quad
da
\quad
\begin{array}{c c c c c c c}
0 & 1 & 2 & 3 & 4 & 5 \\
\text{k} & \text{k} \pm 1 & \text{k} & \text{k} \pm 1 & \text{k} & \text{k} \pm 1 \\
\end{array}
\]

\[d \leq n \leq d\]
The square-free case

Theorem (Chandgotia, Marcus 18)

If G is square-free and $|\mathcal{U}_G| = +\infty$, then $\gamma_G = \Theta(n)$.

Distance between the “furthest possible” walk and a trivial walk.

k is at distance $\leq d$ from 0 and n (in \mathcal{U}_G) so $d \geq n/2$.
The square-free case

Theorem (Chandgotia, Marcus 18)

If G is square-free and $|\mathcal{U}_G| = +\infty$, then $\gamma_G = \Theta(n)$.

Two behaviours for γ_G in square-free graphs:

- $\Theta(1)$ if G is a tree with up to one loop;
- $\Theta(n)$ in general.

Pavlov and Marcus conjectured that these are the only possible behaviours.
Part III

The squareful case: our contribution
If G has squares, lifting to the universal cover fails.
The square cover

Square cover of G

U_G^\square is obtained from U_G by identifying vertices that are equal up to a square.
The square cover

Square cover of G

\mathcal{U}_G^{\square} is obtained from \mathcal{U}_G by identifying vertices that are equal up to a square.
The square cover

Square cover of G

\mathcal{U}_G^{\square} is obtained from \mathcal{U}_G by identifying vertices that are equal up to a square.
The square cover

From G to its universal cover

If G is square-free, any colouring $x \in X_G$ lifts to a colouring of X_{U_G} that maps to x.

Theorem (Chandgotia, Marcus 18)

If G is square-free and $|U_G| = +\infty$, then $\gamma_G = \Theta(n)$.

Theorem (Gangloff, H., Opocha 22)

If $|U_{\Box G}| = +\infty$, then $\gamma_G = \Theta(n)$.

What happens when $|U_{\Box G}| < +\infty$?
The square cover

From G to its universal cover
If G is square-free, any colouring $x \in X_G$ lifts to a colouring of $X_{\mathcal{U}_G}$ that maps to x.

From G to its square cover
Any colouring $x \in X_G$ lifts to a colouring of $X_{\mathcal{U}_G^\square}$ that maps to x.

Theorem (Chandgotia, Marcus 18)
If G is square-free and $|\mathcal{U}_G| = +\infty$, then $\gamma_G = \Theta(n)$.

Theorem (Gangloff, H., Opocha 22)
If $|\mathcal{U}_G^\square| = +\infty$, then $\gamma_G = \Theta(n)$.

What happens when $|\mathcal{U}_G^\square| < +\infty$?
A worst-case logarithmic bound

Theorem (Gangloff, H., Opocha 22)

If $|\mathcal{U}_G| < +\infty$, then $\gamma_G = O(\log n)$.

Lift to \mathcal{U}_G and consider a cycle c^n.

c can be decomposed into squares in the following sense:

(i) c_i

(ii) $c_i \ c_{i+1}$

(iii) $c_i \ c_{i+1}$
A worst-case logarithmic bound

Theorem (Gangloff, H., Opocha 22)

If $|\mathcal{U}_G^\square| < +\infty$, then $\gamma_G = O(\log n)$.

Lift to \mathcal{U}_G^\square and consider a cycle c^n. c can be decomposed into squares in the following sense:
A worst-case logarithmic bound

Theorem (Gangloff, H., Opocha 22)

If $|\mathcal{U}_G^\square| < +\infty$, then $\gamma_G = O(\log n)$.

Lift to \mathcal{U}_G^\square and consider a cycle c^n.

c can be decomposed into squares in the following sense:

(ii)

(c_{0} c_{1} c_{2} c_{3}) (c_{0} c_{1} c_{2} c_{3} c_{0} c_{1} c_{2} c_{3}) (c_{0} c_{1} c_{2} c_{3})
A worst-case logarithmic bound

Theorem (Gangloff, H., Opocha 22)

If $|\mathcal{U}_G^\square| < +\infty$, then $\gamma_G = O(\log n)$.

Lift to \mathcal{U}_G^\square and consider a cycle c^n.

c can be decomposed into squares in the following sense:

$$(iii)$$

\begin{array}{|c|c|c|c|}
\hline
 c_0 & c_1 & c_2 & c_3 \\
\hline
 c_1 & c_2 & c_3 & c_0 \\
\hline
 c_1 & a & b & c_2 \\
\hline
 c_1 & c_2 & c_3 & c_0 \\
\hline
\end{array}$
Theorem (Gangloff, H., Opocha 22)

If $|\mathcal{U}_G^\square| < +\infty$, then $\gamma_G = O(\log n)$.

Lift to \mathcal{U}_G^\square and consider a cycle c^n. c can be decomposed into squares in the following sense:
The Ken-no-Katabami graph

(Thanks to Jan van der Heuvel)
The Ken-no-Katabami graph

Theorem (Gangloff, H., Opocha 22)

\[\gamma_G(n) = \Theta(\log n) \] for the Ken-no-Katabami graph.

Critical walk: \((abcdef)^n\) is at distance \(\log n\) from a trivial cycle.

Key property: cycles at distance 1 from \(abcdef\) are all larger, so nothing can be done in parallel.

(Thanks to Jan van der Heuvel)
Conclusion

There are three possible behaviours for γ_G:

- $\Theta(n)$: infinite square cover.
- $\Theta(1)$: every cycle can be square-decomposed through smaller cycles.
- $\Theta(\log n)$: some cycle cannot be square-decomposed in this way.

Open questions:

- Intermediate behaviour between $\Theta(\log n)$ – $\Theta(1)$?
- What about higher-dimensional Hom shifts? Is there a logarithmic case?

Work in progress (with Chandgotia, Gangloff, Oprocha)

The cases $\Theta(n)$ and $O(\log n)$ are computably unseparable.