Block gluing distance in Hom shifts Walk reconfiguration distance in graphs

Silvère Gangloff, Benjamin Hellouin de Menibus, Piotr Opocha

LISN, Université Paris Saclay
GT Combinatoire et Interactions, Bordeaux

Dédié à la mémoire de Ioannis (Yannis) Manoussakis

 décédé le 5 juin 2021
Subshifts

\mathscr{A} a finite alphabet (\square, \square and later a, b);
\mathbb{Z}^{2} the grid to be coloured;
\mathscr{A}^{*} the finite patterns;
$\mathscr{A}^{\mathbb{Z}^{d}}$ the infinite configurations.

$$
d=2, \mathscr{F}=\{\boldsymbol{\square} ; \boldsymbol{\square}\}:
$$

Subshift of finite type (SFT): the set of configurations avoiding a finite set of forbidden patterns.

Hom shifts

Hom shift

Let G be an undirected graph.
The Hom shift X_{G} is the set of morphisms $\mathbb{Z}^{2} \rightarrow G$.

Hom shifts are subshifts with adjacency constraints and invariant by rotation and symmetry.
ex: $X_{K_{k}}$ are the k-colourings of \mathbb{Z}^{2}.

Why do we like Hom shifts?

- Natural definition (invariance by isometry) with a physical meaning;
- Well-studied examples (hard square, colourings, square ice);
- No embedding of computation \rightarrow no (known) undecidable problems;
- Highly nontrivial problems and rich combinatorics.

Block-gluing distance in Hom shifts

Take two valid $n \times n$ patterns. Can we glue them together and complete them into a valid configuration?

									\square			-									
																		\qquad			

Block-gluing distance in Hom shifts

Take two valid $n \times n$ patterns. If they are far enough, can we glue them together and complete them into a valid configuration?

												-							
										$?$									

Block-gluing distance

$\gamma_{G}(n)$ is the minimum distance such that this is possible for all $n \times n$ patterns.

Walk reconfiguration distance in graphs

Two walks x and y of length n in G are at distance 1 if x_{i} and y_{i} are neighbours in G for every i.

$\left.$| $x=$ |
| :--- |
| $y=$ |
| x_{0} |
| x_{0} |
| y_{0} |$y_{1} \right\rvert\, x_{2}$

Walk reconfiguration distance

$\gamma_{G}(n)$ is the maximal distance between two walks of length n in G.
$\triangle n$ is not the size of the graph!
Claim: it is the same γ_{G} as before.

Warmup

Theorem

For any connected graph $G, \gamma_{G}(n)=O(n)$.

Warmup

Theorem

For any connected graph $G, \gamma_{G}(n)=O(n)$.

u_{0}	u_{1}	u_{2}	u_{3}	u_{4}
a	u_{0}	u_{1}	u_{2}	u_{3}

> for any walk
> $u_{0}-a-b-v_{4}$ in G.

v_{0}	v_{1}	v_{2}	v_{3}	v_{4}

Warmup

Theorem

For any connected graph $G, \gamma_{G}(n)=O(n)$.

u_{0}	u_{1}	u_{2}	u_{3}	u_{4}
a	u_{0}	u_{1}	u_{2}	u_{3}
b	a	u_{0}	u_{1}	u_{2}
v_{4}	b	a	u_{0}	u_{1}
v_{3}	v_{4}	b	a	u_{0}
v_{2}	v_{3}	v_{4}	b	a
v_{1}	v_{2}	v_{3}	v_{4}	b
v_{0}	v_{1}	v_{2}	v_{3}	v_{4}

for any walk
$u_{0}-a-b-v_{4}$ in G.

Part II

The square-free case: Chandgotia \& Marcus

Trees

Theorem
When G is a tree, $\gamma_{G}(n)=O(1)$.

a	b	c	e	f	e	c	d	c	b

Trees

Theorem

When G is a tree, $\gamma_{G}(n)=O(1)$.

\searrow| a | b | c | e | f | e | c | d | c | b |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| b | a | b | c | e | f | e | c | d | c |

Step 1: shift right.

Trees

Theorem
When G is a tree, $\gamma_{G}(n)=O(1)$.

Step 1: shift right and replace $a \rightarrow c, f \rightarrow c, d \rightarrow b$.

Trees

Theorem

When G is a tree, $\gamma_{G}(n)=O(1)$.

\downarrow| a | b | c | e | f | e | c | d | c | b |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| b | c | b | c | e | c | e | c | b | c |
| c | b |

Step 1: shift right and replace $a \rightarrow c, f \rightarrow c, d \rightarrow b$.
Step 2: shift left and replace $e \rightarrow b$.

Trees

Theorem

When G is a tree, $\gamma_{G}(n)=O(1)$.

\downarrow| a | b | c | e | f | e | c | d | c | b |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| b | c | b | c | e | c | e | c | b | c |
| c | b |

Step 1: shift right and replace $a \rightarrow c, f \rightarrow c, d \rightarrow b$.
Step 2: shift left and replace $e \rightarrow b$.
Every walk is at constant distance from a trivial walk.
still works if G has one loop.

Characterisation for the square-free case

Theorem (Chandgotia, Marcus 18)

If G is square-free, then $\gamma_{G}=\Theta(n)$ or $\Theta(1)$.
The latter is when G is a tree with ≤ 1 loop.
Square-free : if $x_{0}-x_{1}-x_{2}-x_{3}-x_{0}$, then $x_{3}=x_{1}$ or $x_{0}=x_{2}$.

Universal cover

Universal cover \mathscr{U}_{G}
 Smallest tree with a surjective morphism $\mathscr{U}_{G} \rightarrow G$ (that "has the same neighbourhoods").

Universal cover

Universal cover \mathscr{U}_{G}

Smallest tree with a surjective morphism $\mathscr{U}_{G} \rightarrow G$ (that "has the same neighbourhoods").

Universal cover

Universal cover \mathscr{U}_{G}

Smallest tree with a surjective morphism $\mathscr{U}_{G} \rightarrow G$ (that "has the same neighbourhoods").

Concrete construction

Choose an abitrary vertex in G (say, a).
Vertices of \mathscr{U}_{G} correspond to walks with no backtrack in G starting from a.

Lifting

From G to its universal cover

If G is square-free, any colouring $x \in X_{G}$ lifts to a colouring of $X_{\mathscr{U}_{G}}$ that maps to x.

Assign the empty walk (0) to any point, then choose the only possiblity.

Lifting

Why is this working?

Why can't two paths with the same origin and destination reach different vertices in \mathscr{U}_{G} ?

x_{3}	x_{2}
x_{0}	x_{1}

If G is square-free, then $x_{3}=x_{1}$ or $x_{0}=x_{2}$.
$\rightarrow x_{0} x_{1} x_{2} x_{3} x_{0}$ is a backtracking (= trivial) cycle.

Lifting

Why is this working?

Why can't two paths with the same origin and destination reach different vertices in \mathscr{U}_{G} ?

If G is square-free, every cycle in X_{G} is a backtracking (= trivial) cycle.

The square-free case

Theorem (Chandgotia, Marcus 18)

If G is square-free and $\left|\mathscr{U}_{G}\right|=+\infty$, then $\gamma_{G}=\Theta(n)$.

The square-free case

Theorem (Chandgotia, Marcus 18)

If G is square-free and $\left|\mathscr{U}_{G}\right|=+\infty$, then $\gamma_{G}=\Theta(n)$.
Distance between the "furthest possible" walk and a trivial walk.

The square-free case

Theorem (Chandgotia, Marcus 18)

If G is square-free and $\left|\mathscr{U}_{G}\right|=+\infty$, then $\gamma_{G}=\Theta(n)$.
Distance between the "furthest possible" walk and a trivial walk.

k is at distance $\leq d$ from 0 and n (in \mathscr{U}_{G}) so $d \geq n / 2$.

The square-free case

Theorem (Chandgotia, Marcus 18)

If G is square-free and $\left|\mathscr{U}_{G}\right|=+\infty$, then $\gamma_{G}=\Theta(n)$.

Two behaviours for γ_{G} in square-free graphs:

- $\Theta(1)$ if G is a tree with up to one loop;
- $\Theta(n)$ in general.

Pavlov and Marcus conjectured that these are the only possible behaviours.

Part III

The squareful case: our contribution

Fixing the universal cover

If G has squares, lifting to the universal cover fails.

a	d			
b	c	$\xrightarrow{\text { lift? }}$	0	$\neq 3$
:---	:---			
1	2			

The square cover

Square cover of G

$\mathscr{U}_{G}^{\square}$ is obtained from \mathscr{U}_{G} by identifying vertices that are equal up to a square.

The square cover

Square cover of G

$\mathscr{U}_{G}^{\square}$ is obtained from \mathscr{U}_{G} by identifying vertices that are equal up to a square.

The square cover

Square cover of G

$\mathscr{U}_{G}^{\square}$ is obtained from \mathscr{U}_{G} by identifying vertices that are equal up to a square.

The square cover

From G to its universal cover

If G is square-free, any colouring $x \in X_{G}$ lifts to a colouring of $X_{\mathscr{U}_{G}}$ that maps to x.

Theorem (Chandgotia, Marcus 18)

If G is square-free and $\left|\mathscr{U}_{G}\right|=+\infty$, then $\gamma_{G}=\Theta(n)$.

The square cover

From G to its universal cover

If G is square-free, any colouring $x \in X_{G}$ lifts to a colouring of $X_{\mathscr{U}_{G}}$ that maps to X.

From G to its square cover
Any colouring $x \in X_{G}$ lifts to a colouring of $X_{\mathscr{U}_{G}^{\square}}$ that maps to x.

Theorem (Chandgotia, Marcus 18)

If G is square-free and $\left|\mathscr{U}_{G}\right|=+\infty$, then $\gamma_{G}=\Theta(n)$.

Theorem (Gangloff, H., Opocha 22)

If $\left|\mathscr{U}_{G}^{\square}\right|=+\infty$, then $\gamma_{G}=\Theta(n)$.
What happens when $\left|\mathscr{U}_{G}^{\square}\right|<+\infty$?

A worst-case logarithmic bound

Theorem (Gangloff, H., Opocha 22)

If $\left|\mathscr{U}_{G}^{\square}\right|<+\infty$, then $\gamma_{G}=O(\log n)$.

Lift to $\mathscr{U}_{G}^{\square}$ and consider a cycle c^{n}.
c can be decomposed into squares in the following sense:
(i)

(ii)
(iii)

A worst-case logarithmic bound

Theorem (Gangloff, H., Opocha 22)
 If $\left|\mathscr{U}_{G}^{\square}\right|<+\infty$, then $\gamma_{G}=O(\log n)$.

Lift to $\mathscr{U}_{G}^{\square}$ and consider a cycle c^{n}.
c can be decomposed into squares in the following sense:

c_{0}	c_{1}	c_{2}	c_{3}	c_{0}	c_{1}	c_{2}	c_{3}	c_{0}	c_{1}	c_{2}
c_{1}	a	c_{3}	c_{0}	c_{1}	a	c_{3}	c_{0}	c_{1}	a	c_{3}

A worst-case logarithmic bound

Theorem (Gangloff, H., Opocha 22)

If $\left|\mathscr{U}_{G}^{\square}\right|<+\infty$, then $\gamma_{G}=O(\log n)$.

Lift to $\mathscr{U}_{G}^{\square}$ and consider a cycle c^{n}. c can be decomposed into squares in the following sense:

c_{0}	c_{1}	c_{2}	c_{3}	c_{0}	c_{1}	c_{2}	c_{3}	c_{0}	c_{1}	c_{2}
c_{3}	c_{0}	c_{3}								

A worst-case logarithmic bound

Theorem (Gangloff, H., Opocha 22)
 If $\left|\mathscr{U}_{G}^{\square}\right|<+\infty$, then $\gamma_{G}=O(\log n)$.

Lift to $\mathscr{U}_{G}^{\square}$ and consider a cycle c^{n}. c can be decomposed into squares in the following sense:

A worst-case logarithmic bound

Theorem (Gangloff, H., Opocha 22)
 If $\mid \mathscr{U}_{G} \square^{\prime}<+\infty$, then $\gamma_{G}=O(\log n)$.

Lift to $\mathscr{U}_{G}^{\square}$ and consider a cycle c^{n}.
c can be decomposed into squares in the following sense:

The Ken-no-Katabami graph

(Thanks to Jan van der Heuvel)

The Ken-no-Katabami graph

Theorem
 (Gangloff, H., Opocha 22)

$\gamma_{G}(n)=\Theta(\log n)$ for the Ken-no-Katabami graph.

Critical walk: $(a b c d e f)^{n}$ is at distance $\log n$ from a trivial cycle.

Key property: cycles at distance 1 from abcdef are all larger, so nothing can be done in parallel.
(Thanks to Jan van der Heuvel)

Conclusion

There are three possible behaviours for γ_{G} :

- $\Theta(n)$: infinite square cover.
- $\Theta(1)$: every cycle can be square-decomposed through smaller cycles.
- $\Theta(\log n)$: some cycle cannot be square-decomposed in this way.

Open questions:

- Intermediate behaviour between $\Theta(\log n)-\Theta(1)$?
- What about higher-dimensional Hom shifts? Is there a logarithmic case?

Work in progress (with Chandgotia, Gangloff, Oprocha)

The cases $\Theta(n)$ and $O(\log n)$ are computably unseparable.

