UNIVERSAL FAMILIES OF ARCS AND CURVES ON SURFACES

Niloufar FULADI Arnaud de MESMAY Hugo Parlier

LIGM, Université Gustave Eiffel, Paris

Séminaire de combinatoire, LaBRI, May 2023

OuTLine

1 Introduction

2 A Motivation

3 Realizing pants decompositions

4 Realizing all triangulations

SURFACES

- A surface is a topological space that locally looks like a plane or a half plane.

- We deal with connected, compact, orientable surfaces determined by their genus and number of punctures.

SURFACES

- A surface is a topological space that locally looks like a plane or a half plane.

- We deal with connected, compact, orientable surfaces determined by their genus and number of punctures.
- Closed curves are maps from S^{1} to the surface. We deal with simple curves.

PANTS DECOMPOSITION

- A pants decomposition is a set of curves that cuts the surface into pairs of pants

PANTS DECOMPOSITION

- A pants decomposition is a set of curves that cuts the surface into pairs of pants

- A surface $S_{g, b}$ is decomposed to $2 g-2+b$ pairs of pants.
\rightarrow A pants decomposition of $S_{g, b}$ contains $3 g-3+b$ curves.

REALIZING ALL PANTS DECOMPOSITIONS

- Two pants decompositions are of the same homeomorphism type if there exists a homeomorphism of the surface that maps one to the other.

- A dual trivalent graph that encodes the adjacencies of the pants determines the homeomorphism type of a pants decomposition.

- A pants universal family of curves is a set of curves that contains all types of pants decomposition of the surface

REALIZING ALL PANTS DECOMPOSITIONS

- Two pants decompositions are of the same homeomorphism type if there exists a homeomorphism of the surface that maps one to the other.

- A dual trivalent graph that encodes the adjacencies of the pants determines the homeomorphism type of a pants decomposition.

- A pants universal family of curves is a set of curves that contains all types of pants decomposition of the surface
* Problem: What is the size of this family?

Estimating The size of THE universal family

- A surface of genus g has $g^{\Theta(g)}$ homeomorphism types of pants decompositions.
- There exists an upper bound of $g^{O(g)}$ for the size of such a family.

Estimating THE SIZE OF THE UNIVERSAL FAMILY

- A surface of genus g has $g^{\Theta(g)}$ homeomorphism types of pants decompositions.
- There exists an upper bound of $g^{O(g)}$ for the size of such a family.
- We can improve this upper bound by reusing the curves:

Theorem (F.,de Mesmay, Parlier)
Let Γ be a minimal size universal family for pants decompositions of a surface of genus g without punctures. Then

$$
|\Gamma| \leq 3^{2 g-1} \quad \text { and } \quad|\Gamma|=\Omega\left(g^{\frac{4}{3}-\epsilon}\right) \quad \text { for any } \quad \epsilon>0 .
$$

Question: Can we close the gap between the upper and lower bound?

REALIZING PANTS DECOMPOSITIONS

Given a sphere with n punctures, we can consider two kinds of homeomorphisms:

- homeomorphisms that fix punctures pointwise (labelled punctures)
- homeomorphisms that can permute the punctures (unlabelled punctures)

REALIZING PANTS DECOMPOSITIONS

Given a sphere with n punctures, we can consider two kinds of homeomorphisms:

- homeomorphisms that fix punctures pointwise (labelled punctures)
- homeomorphisms that can permute the punctures (unlabelled punctures)

	Lower bound	Upper bound
Surface of genus g without punctures	$\Omega\left(n^{\frac{4}{3}}\right)$	$3^{2 g-1}$
Sphere with n unlabelled punctures	$\Omega(n \log (n))$	$O\left(n^{2}\right)$
Sphere with n labelled punctures	$2^{n-1}-n-1$	3^{n-1}

A MOTIVATION: UNIVERSAL SHORTEST PATH METRIC

Theorem (FÀRY-WAGNER)

All planar graphs can be drawn in the plane with straight lines.

Conjecture (Hubard, Kaluža, Tancer) '17

For any surface S_{g}, there exists a universal Riemannian metric (universal shortest path metric such that all graphs embeddable on S_{g} can be embedded with shortest paths.

- It is true for sphere, the projective plane, torus and the Klein bottle.
- For higher g, most metrics are not a universal shortest path metric.

Theorem (Hubard, Kaluža, de Mesmay, Tancer '17)

For every $g>1$, there exists a universal metric for which all graphs embeddable on the surface can be embedded such that edges are concatenations of $O(g)$ shortest paths.

A motivation: Universal shortest path metric

Observation

A super-polynomial lower bound on the size of a pants universal family of curves leads to a negation of the universal shortest metric conjecture.

- For any pants decomposition of the surface create a graph embedding that contains the decomposition
- Assuming the conjecture, all these graphs have a shortest path embedding
\rightarrow each curve in the pants decomposition embeds with constant number of shortest paths

\rightarrow Each pair of curves in the family cross constantly

A motivation: Universal shortest path metric

Observation

A super-polynomial lower bound on the size of a pants universal family of curves leads to a negation of the universal shortest metric conjecture.

- For any pants decomposition of the surface create a graph embedding that contains the decomposition
- Assuming the conjecture, all these graphs have a shortest path embedding
\rightarrow each curve in the pants decomposition embeds with constant number of shortest paths

\rightarrow Each pair of curves in the family cross constantly
- Maximal number of non-homotopic simple closed curves on a surface that cross constantly is polynomial in g. [Greene '18] $\%$

The case of surfaces Without punctures

Theorem (F.,De Mesmay, Parlier)

Let Γ be a minimal size universal family for pants decompositions of a surface of genus g without punctures. Then

$$
|\Gamma| \leq 3^{2 g-1} \quad \text { and } \quad|\Gamma|=\Omega\left(g^{\frac{4}{3}-\epsilon}\right) \quad \text { for any } \quad \epsilon>0
$$

\rightarrow Upper bound:

- Any pants decomposition contains g simple closed curves that cut the surface into a sphere with $2 g$ punctures.

The case of surfaces without punctures

Theorem (F.,De Mesmay, Parlier)
Let Γ be a minimal size universal family for pants decompositions of a surface of genus g without punctures. Then

$$
|\Gamma| \leq 3^{2 g-1} \quad \text { and } \quad|\Gamma|=\Omega\left(g^{\frac{4}{3}-\epsilon}\right) \quad \text { for any } \quad \epsilon>0
$$

\rightarrow Upper bound:

- Any pants decomposition contains g simple closed curves that cut the surface into a sphere with $2 g$ punctures.

The case of surfaces without punctures

Theorem (F., De Mesmay, Parlier)
Let Γ be a minimal size universal family for pants decompositions of a surface of genus g without punctures. Then

$$
|\Gamma| \leq 3^{2 g-1} \quad \text { and } \quad|\Gamma|=\Omega\left(g^{\frac{4}{3}-\epsilon}\right) \quad \text { for any } \quad \epsilon>0
$$

\rightarrow Upper bound:

- Any pants decomposition contains g simple closed curves that cut the surface into a sphere with $2 g$ punctures.

Lemma (F., de Mesmay, Parlier)
Let Γ be a minimal size universal family for pants decompositions of sphere with n labelled punctures. Then $|\Gamma| \leq 3^{n-1}$.

The case of surfaces without punctures

Theorem (F., De Mesmay, Parlier)
Let Γ be a minimal size universal family for pants decompositions of a surface of genus g without punctures. Then

$$
|\Gamma| \leq 3^{2 g-1} \quad \text { and } \quad|\Gamma|=\Omega\left(g^{\frac{4}{3}-\epsilon}\right) \quad \text { for any } \quad \epsilon>0
$$

\rightarrow Upper bound:

- Any pants decomposition contains g simple closed curves that cut the surface into a sphere with $2 g$ punctures.

Lemma (F., de Mesmay, Parlier)
Let Γ be a minimal size universal family for pants decompositions of sphere with n labelled punctures. Then $|\Gamma| \leq 3^{n-1}$.

The case of sphere with labelled punctures

Lemma (F., de Mesmay, Parlier)
Let Γ be a minimal size universal family for pants decompositions of sphere with n labelled punctures. Then $|\Gamma| \leq 3^{n-1}$.

THE CASE OF SPHERE WITH LABELLED PUNCTURES

Lemma (F., de Mesmay, Parlier)
Let Γ be a minimal size universal family for pants decompositions of sphere with n labelled punctures. Then $|\Gamma| \leq 3^{n-1}$.

THE CASE OF SPHERE WITH LABELLED PUNCTURES

Lemma (F., de Mesmay, Parlier)
Let Γ be a minimal size universal family for pants decompositions of sphere with n labelled punctures. Then $|\Gamma| \leq 3^{n-1}$.

The case of sphere with labelled punctures

Lemma (F., de Mesmay, Parlier)
Let Γ be a minimal size universal family for pants decompositions of sphere with n labelled punctures. Then $|\Gamma| \leq 3^{n-1}$.

(1)

- Claim: The family of all these wiggling separating curves realize all the trivalent trees.

The case of sphere with labelled punctures

Lemma (F., de Mesmay, Parlier)
Let Γ be a minimal size universal family for pants decompositions of sphere with n labelled punctures. Then $|\Gamma| \leq 3^{n-1}$.

- Claim: The family of all these wiggling separating curves realize all the trivalent trees.

The case of sphere with labelled punctures

Lemma (F., de Mesmay, Parlier)
Let Γ be a minimal size universal family for pants decompositions of sphere with n labelled punctures. Then $|\Gamma| \leq 3^{n-1}$.

- Claim: The family of all these wiggling separating curves realize all the trivalent trees.

The case of sphere with labelled punctures

Lemma (F., de Mesmay, Parlier)

Let Γ be a minimal size universal family for pants decompositions of sphere with n labelled punctures. Then $|\Gamma| \leq 3^{n-1}$.

- Claim: The family of all these wiggling separating curves realize all the trivalent trees.
- The size of this family is less than 3^{n-1}.

The case of surfaces without punctures

Theorem (F.,De Mesmay, Parlier)

Let Γ be a minimal size universal family for pants decompositions of a surface of genus g without punctures. Then

$$
|\Gamma| \leq 3^{2 g-1} \quad \text { and } \quad|\Gamma|=\Omega\left(g^{\frac{4}{3}-\epsilon}\right) \quad \text { for any } \quad \epsilon>0
$$

\rightarrow Lower bound:

- There exists up to g^{g} types of pants decompositions.
- Each pants decomposition consists of $3 g-3$ curves.

$$
\binom{|\Gamma|}{3 g-3} \gtrsim g^{g} \rightarrow|\Gamma|=\Omega\left(g^{\frac{4}{3}-\epsilon}\right)
$$

Question: Can we do any better?

THE CASE OF SPHERE WITH UNLABELLED PUNCTURES

Theorem

Let Γ be a pants universal family of curves on with minimal size on the sphere with n (unlabelled) punctures. Then

$$
|\Gamma|=O\left(n^{2}\right) \quad \text { and } \quad|\Gamma|=\Omega(n \log (n))
$$

THE CASE OF SPHERE WITH UNLABELLED PUNCTURES

Theorem

Let Γ be a pants universal family of curves on with minimal size on the sphere with n (unlabelled) punctures. Then

$$
|\Gamma|=O\left(n^{2}\right) \quad \text { and } \quad|\Gamma|=\Omega(n \log (n))
$$

\rightarrow Upper bound: label the boundaries arbitrarily and consider standard curves encompassing consecutive punctures.

THE CASE OF SPHERE WITH UNLABELLED PUNCTURES

Theorem

Let Γ be a pants universal family of curves on with minimal size on the sphere with n (unlabelled) punctures. Then

$$
|\Gamma|=O\left(n^{2}\right) \quad \text { and } \quad|\Gamma|=\Omega(n \log (n))
$$

\rightarrow Upper bound: label the boundaries arbitrarily and consider standard curves encompassing consecutive punctures.

\rightarrow Lower bound:

■ For $i \leq \frac{n}{2}$ at least $\left\lfloor\frac{n}{i}\right\rfloor$ curves that separate i boundaries must exist in the pants universal family.
$\rightarrow \Sigma\left\lfloor\frac{n}{i}\right\rfloor=\Omega(n \log n)$.

Families of edges realizing all Triangulations

REALIZING ALL TRIANGULATIONS

- Two triangulations of an n-gon are of the same type, if one can be obtained from a rotation and/or reflection of the other.

- This is similar to the case of spheres with (unlabelled) boundaries.

REALIZING ALL TRIANGULATIONS

Theorem (F., de Mesmay, Parlier)

Let E be a family of edges that realize all the traingulations of an n-gon.
We have $|E|=O\left(n^{2}\right)$ and $|E|=\Omega\left(n^{2-\epsilon}\right) \quad$ for any $\epsilon>0$.
\rightarrow Upper bound follows by computing all the diagonals in the n-gon.
\rightarrow Lower bound:
■ Any such family also needs to realize all types of m-cycles.

- There exist $\Theta\left(n^{m-1}\right)$ types of m-cycles.
- Any such family defines a graph with $|E|$ edges.
$(2,1,2,1)$
- any graph with $|E|$ edges has $O\left(|E|^{\frac{m}{2}}\right)$ m-cycles. (Rivin)

REALIZING ALL TYPES OF PANTS/ TRIANGLES

- A simpler question is to ask for the size of a family of curves that realize all types of triangles.

- or on a sphere with n (unlabelled) punctures, a family that realizes all types of pairs of pants:

Summary and conclusion

	Lower bound	Upper bound
Surface of genus g without punctures	$\Omega\left(n^{\frac{4}{3}}\right)$	$3^{2 g-1}$
Sphere with n labelled punctures	$2^{n-1}-n-1$	3^{n-1}
Sphere with n unlabelled punctures	$\Omega(n \log (n))$	$O\left(n^{2}\right)$

	Lower bound	Upper bound
realizing triangulations in an n-gon	$\Omega\left(n^{2-\epsilon}\right)$	$O\left(n^{2}\right)$

	Lower bound	Upper bound
realizing all types of pants in $S_{0, n}$	$\Omega(n)$	$O\left(n^{\frac{4}{3}} \log ^{\frac{2}{3}} n\right)$
realizing all triangles in an n-gon	$\Omega\left(n^{\frac{4}{3}}\right)$	$\left.O\left(n^{\frac{4}{3}}\right) \log ^{\frac{2}{3}} n\right)$

Summary and conclusion

	Lower bound	Upper bound
Surface of genus g without punctures	$\Omega\left(n^{\frac{4}{3}}\right)$	$3^{2 g-1}$
Sphere with n labelled punctures	$2^{n-1}-n-1$	3^{n-1}
Sphere with n unlabelled punctures	$\Omega(n \log (n))$	$O\left(n^{2}\right)$

	Lower bound	Upper bound
realizing triangulations in an n-gon	$\Omega\left(n^{2-\epsilon}\right)$	$O\left(n^{2}\right)$

	Lower bound	Upper bound
realizing all types of pants in $S_{0, n}$	$\Omega(n)$	$O\left(n^{\frac{4}{3}} \log ^{\frac{2}{3}} n\right)$
realizing all triangles in an n-gon	$\Omega\left(n^{\frac{4}{3}}\right)$	$\left.O\left(n^{\frac{4}{3}}\right) \log ^{\frac{2}{3}} n\right)$

Thank You!

