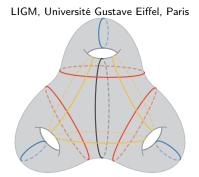
UNIVERSAL FAMILIES OF ARCS AND CURVES ON SURFACES

<u>Niloufar FULADI</u> Arnaud de MESMAY Hugo Parlier



Séminaire de combinatoire, LaBRI, May 2023

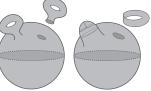
Introduction 00000	A Motivation	Realizing pants decompositions 0000	Realizing all triangulations 00000
OUTLINE			

2 A MOTIVATION

3 Realizing pants decompositions

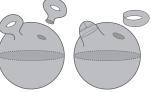
4 Realizing all triangulations

A surface is a topological space that locally looks like a plane or a half plane.

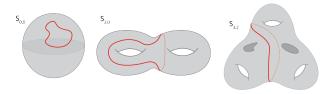


We deal with connected, compact, orientable surfaces determined by their genus and number of punctures.

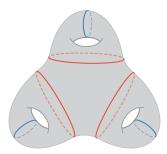
A surface is a topological space that locally looks like a plane or a half plane.



- We deal with connected, compact, orientable surfaces determined by their genus and number of punctures.
- Closed curves are maps from S¹ to the surface. We deal with simple curves.



 A *pants decomposition* is a set of curves that cuts the surface into pairs of pants



A pants decomposition is a set of curves that cuts the surface into pairs of pants

• A surface $S_{g,b}$ is decomposed to 2g - 2 + b pairs of pants. \rightarrow A pants decomposition of $S_{g,b}$ contains 3g - 3 + b curves.

A MOTIVATION

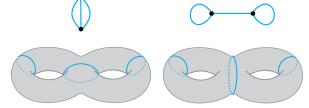
REALIZING PANTS DECOMPOSITIONS

REALIZING ALL TRIANGULATIONS

REALIZING ALL PANTS DECOMPOSITIONS

Two pants decompositions are of the same homeomorphism type if there exists a homeomorphism of the surface that maps one to the other.

• A dual trivalent graph that encodes the adjacencies of the pants determines the homeomorphism type of a pants decomposition.



• A *pants universal family of curves* is a set of curves that contains all types of pants decomposition of the surface

A Motivation

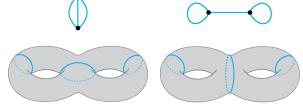
REALIZING PANTS DECOMPOSITIONS

Realizing all triangulations

REALIZING ALL PANTS DECOMPOSITIONS

Two pants decompositions are of the same homeomorphism type if there exists a homeomorphism of the surface that maps one to the other.

• A dual trivalent graph that encodes the adjacencies of the pants determines the homeomorphism type of a pants decomposition.



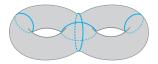
- A *pants universal family of curves* is a set of curves that contains all types of pants decomposition of the surface
- * **Problem:** What is the size of this family?

ESTIMATING THE SIZE OF THE UNIVERSAL FAMILY

- A surface of genus g has g^{Θ(g)} homeomorphism types of pants decompositions.
- There exists an upper bound of $g^{O(g)}$ for the size of such a family.

ESTIMATING THE SIZE OF THE UNIVERSAL FAMILY

- A surface of genus g has g^{Θ(g)} homeomorphism types of pants decompositions.
- There exists an upper bound of $g^{O(g)}$ for the size of such a family.
- We can improve this upper bound by reusing the curves:



THEOREM (F., DE MESMAY, PARLIER)

Let Γ be a minimal size universal family for pants decompositions of a surface of genus g without punctures. Then

$$|\Gamma| \leq 3^{2g-1}$$
 and $|\Gamma| = \Omega(g^{\frac{4}{3}-\epsilon})$ for any $\epsilon > 0$.

Question: Can we close the gap between the upper and lower bound?

REALIZING PANTS DECOMPOSITIONS

Given a sphere with n punctures, we can consider two kinds of homeomorphisms:

- homeomorphisms that fix punctures pointwise (labelled punctures)
- homeomorphisms that can permute the punctures (unlabelled punctures)

REALIZING PANTS DECOMPOSITIONS

Given a sphere with n punctures, we can consider two kinds of homeomorphisms:

- homeomorphisms that fix punctures pointwise (labelled punctures)
- homeomorphisms that can permute the punctures (unlabelled punctures)

	Lower bound	Upper bound
Surface of genus g without punctures	$\Omega(n^{\frac{4}{3}})$	3^{2g-1}
Sphere with <i>n</i> unlabelled punctures	$\Omega(n \log(n))$	$O(n^2)$
Sphere with <i>n</i> labelled punctures	$2^{n-1} - n - 1$	3^{n-1}

A motivation: Universal shortest path metric

THEOREM (FÀRY-WAGNER)

All planar graphs can be drawn in the plane with straight lines.

CONJECTURE (HUBARD, KALUŽA, TANCER) '17

For any surface S_g , there exists a universal Riemannian metric (*universal shortest path metric* such that all graphs embeddable on S_g can be embedded with shortest paths.

- It is true for sphere, the projective plane, torus and the Klein bottle.
- For higher g, most metrics are not a universal shortest path metric.

THEOREM (HUBARD, KALUŽA, DE MESMAY, TANCER '17)

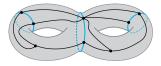
For every g > 1, there exists a universal metric for which all graphs embeddable on the surface can be embedded such that edges are concatenations of O(g) shortest paths.

A MOTIVATION: UNIVERSAL SHORTEST PATH METRIC

OBSERVATION

A super-polynomial lower bound on the size of a pants universal family of curves leads to a negation of the universal shortest metric conjecture.

- For any pants decomposition of the surface create a graph embedding that contains the decomposition
- Assuming the conjecture, all these graphs have a shortest path embedding
- $\rightarrow\,$ each curve in the pants decomposition embeds with constant number of shortest paths
- $\rightarrow\,$ Each pair of curves in the family cross constantly



A MOTIVATION: UNIVERSAL SHORTEST PATH METRIC

OBSERVATION

A super-polynomial lower bound on the size of a pants universal family of curves leads to a negation of the universal shortest metric conjecture.

- For any pants decomposition of the surface create a graph embedding that contains the decomposition
- Assuming the conjecture, all these graphs have a shortest path embedding
- $\rightarrow\,$ each curve in the pants decomposition embeds with constant number of shortest paths

- $\rightarrow\,$ Each pair of curves in the family cross constantly
 - Maximal number of non-homotopic simple closed curves on a surface that cross constantly is polynomial in g. [Greene '18]*

THEOREM (F., DE MESMAY, PARLIER)

Let Γ be a minimal size universal family for pants decompositions of a surface of genus g without punctures. Then

$$|\Gamma| \leq 3^{2g-1}$$
 and $|\Gamma| = \Omega(g^{\frac{4}{3}-\epsilon})$ for any $\epsilon > 0$.

\rightarrow Upper bound:

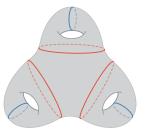
Any pants decomposition contains g simple closed curves that cut the surface into a sphere with 2g punctures.

THEOREM (F., DE MESMAY, PARLIER)

Let Γ be a minimal size universal family for pants decompositions of a surface of genus g without punctures. Then

$$|\Gamma| \leq 3^{2g-1}$$
 and $|\Gamma| = \Omega(g^{rac{4}{3}-\epsilon})$ for any $\epsilon > 0.$

- \rightarrow Upper bound:
 - Any pants decomposition contains g simple closed curves that cut the surface into a sphere with 2g punctures.



THEOREM (F., DE MESMAY, PARLIER)

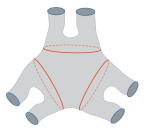
Let Γ be a minimal size universal family for pants decompositions of a surface of genus g without punctures. Then

$$|\Gamma| \leq 3^{2g-1}$$
 and $|\Gamma| = \Omega(g^{rac{4}{3}-\epsilon})$ for any $\epsilon > 0.$

\rightarrow Upper bound:

Any pants decomposition contains g simple closed curves that cut the surface into a sphere with 2g punctures.

LEMMA (F., DE MESMAY, PARLIER)



THEOREM (F., DE MESMAY, PARLIER)

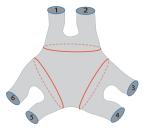
Let Γ be a minimal size universal family for pants decompositions of a surface of genus g without punctures. Then

$$|\Gamma| \leq 3^{2g-1}$$
 and $|\Gamma| = \Omega(g^{rac{4}{3}-\epsilon})$ for any $\epsilon > 0.$

\rightarrow Upper bound:

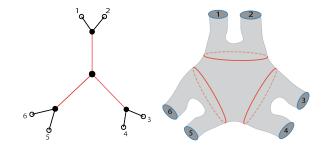
Any pants decomposition contains g simple closed curves that cut the surface into a sphere with 2g punctures.

LEMMA (F., DE MESMAY, PARLIER)



THE CASE OF SPHERE WITH LABELLED PUNCTURES

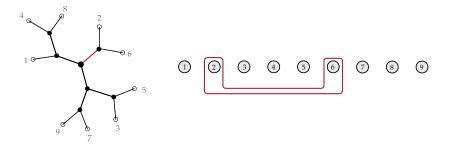
LEMMA (F., DE MESMAY, PARLIER)



Realizing all triangulations

THE CASE OF SPHERE WITH LABELLED PUNCTURES

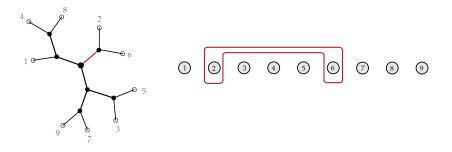
LEMMA (F., DE MESMAY, PARLIER)



Realizing all triangulations

THE CASE OF SPHERE WITH LABELLED PUNCTURES

LEMMA (F., DE MESMAY, PARLIER)

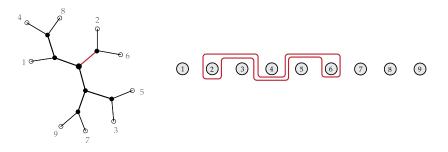


Realizing all triangulations

THE CASE OF SPHERE WITH LABELLED PUNCTURES

LEMMA (F., DE MESMAY, PARLIER)

Let Γ be a minimal size universal family for pants decompositions of sphere with n labelled punctures. Then $|\Gamma| \leq 3^{n-1}$.

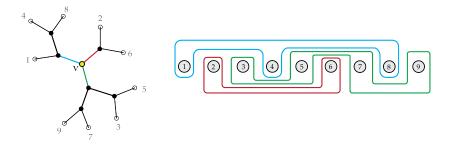


 Claim: The family of all these wiggling separating curves realize all the trivalent trees.

THE CASE OF SPHERE WITH LABELLED PUNCTURES

LEMMA (F., DE MESMAY, PARLIER)

Let Γ be a minimal size universal family for pants decompositions of sphere with n labelled punctures. Then $|\Gamma| \leq 3^{n-1}$.

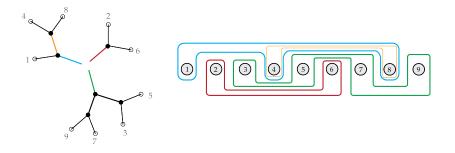


 Claim: The family of all these wiggling separating curves realize all the trivalent trees.

THE CASE OF SPHERE WITH LABELLED PUNCTURES

LEMMA (F., DE MESMAY, PARLIER)

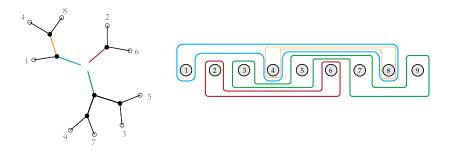
Let Γ be a minimal size universal family for pants decompositions of sphere with n labelled punctures. Then $|\Gamma| \leq 3^{n-1}$.



 Claim: The family of all these wiggling separating curves realize all the trivalent trees.

THE CASE OF SPHERE WITH LABELLED PUNCTURES

LEMMA (F., DE MESMAY, PARLIER)



- Claim: The family of all these wiggling separating curves realize all the trivalent trees.
- The size of this family is less than 3^{n-1} .

THEOREM (F., DE MESMAY, PARLIER)

Let Γ be a minimal size universal family for pants decompositions of a surface of genus g without punctures. Then

$$|\Gamma| \leq 3^{2g-1}$$
 and $|\Gamma| = \Omega(g^{\frac{4}{3}-\epsilon})$ for any $\epsilon > 0.$

 \rightarrow Lower bound:

- There exists up to g^g types of pants decompositions.
- Each pants decomposition consists of 3g − 3 curves.

$$\binom{|\mathsf{\Gamma}|}{3g-3}\gtrsim g^g
ightarrow |\mathsf{\Gamma}| = \Omega(g^{rac{4}{3}-\epsilon})$$

Question: Can we do any better?

THE CASE OF SPHERE WITH UNLABELLED PUNCTURES

Theorem

Let Γ be a pants universal family of curves on with minimal size on the sphere with n (unlabelled) punctures. Then

$$|\Gamma| = O(n^2)$$
 and $|\Gamma| = \Omega(n \log(n)).$

THE CASE OF SPHERE WITH UNLABELLED PUNCTURES

Theorem

Let Γ be a pants universal family of curves on with minimal size on the sphere with n (unlabelled) punctures. Then

$$|\Gamma| = O(n^2)$$
 and $|\Gamma| = \Omega(n \log(n)).$

 \rightarrow <u>Upper bound</u>: label the boundaries arbitrarily and consider standard curves encompassing consecutive punctures.

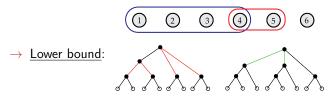
THE CASE OF SPHERE WITH UNLABELLED PUNCTURES

Theorem

Let Γ be a pants universal family of curves on with minimal size on the sphere with n (unlabelled) punctures. Then

$$|\Gamma| = O(n^2)$$
 and $|\Gamma| = \Omega(n \log(n)).$

 \rightarrow <u>Upper bound</u>: label the boundaries arbitrarily and consider standard curves encompassing consecutive punctures.



• For $i \leq \frac{n}{2}$ at least $\lfloor \frac{n}{i} \rfloor$ curves that separate *i* boundaries must exist in the pants universal family.

$$\rightarrow \Sigma \lfloor \frac{n}{i} \rfloor = \Omega(n \log n).$$

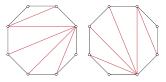
Introduction 00000 A Motivation 00 Realizing pants decompositions

Realizing all triangulations

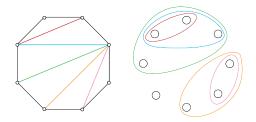
Families of edges realizing all Triangulations

REALIZING ALL TRIANGULATIONS

Two triangulations of an *n*-gon are of the same type, if one can be obtained from a rotation and/or reflection of the other.



 This is similar to the case of spheres with (unlabelled) boundaries.



CEALIZING PANTS DECOMPOSITIONS

Realizing all triangulations 00000

REALIZING ALL TRIANGULATIONS

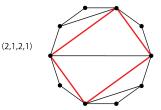
THEOREM (F., DE MESMAY, PARLIER)

Let E be a family of edges that realize all the traingulations of an n-gon. We have $|E| = O(n^2)$ and $|E| = \Omega(n^{2-\epsilon})$ for any $\epsilon > 0$.

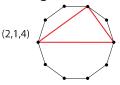
- $\rightarrow\,$ Upper bound follows by computing all the diagonals in the *n*-gon.
- \rightarrow Lower bound:

Any such family also needs to realize all types of *m*-cycles.

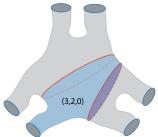
- There exist $\Theta(n^{m-1})$ types of *m*-cycles.
- Any such family defines a graph with |E| edges.
- any graph with |E| edges has O(|E|^{m/2}) m-cycles. (Rivin)



A simpler question is to ask for the size of a family of curves that realize all types of triangles.



or on a sphere with n (unlabelled) punctures, a family that realizes all types of pairs of pants:



Introduction	A Motivation	Realizing pants decompositions	Realizing all triangulations $0000 \bullet$

SUMMARY AND CONCLUSION

	Lower bound	Upper bound
Surface of genus g without punctures	$\Omega(n^{\frac{4}{3}})$	3^{2g-1}
Sphere with <i>n</i> labelled punctures	$2^{n-1} - n - 1$	3^{n-1}
Sphere with <i>n</i> unlabelled punctures	$\Omega(n \log(n))$	$O(n^2)$

	Lower bound	Upper bound
realizing triangulations in an <i>n</i> -gon	$\Omega(n^{2-\epsilon})$	$O(n^2)$

	Lower bound	Upper bound
realizing all types of pants in $S_{0,n}$		$O(n^{\frac{4}{3}}\log^{\frac{2}{3}}n)$
realizing all triangles in an <i>n</i> -gon	$\Omega(n^{\frac{4}{3}})$	$O(n^{\frac{4}{3}})\log^{\frac{2}{3}}n)$

Introduction 00000	A Motivation 00	Realizing pants decompositions	Realizing all triangulations 0000

SUMMARY AND CONCLUSION

	Lower bound	Upper bound
Surface of genus g without punctures	$\Omega(n^{\frac{4}{3}})$	3^{2g-1}
Sphere with <i>n</i> labelled punctures	$2^{n-1} - n - 1$	3^{n-1}
Sphere with <i>n</i> unlabelled punctures	$\Omega(n \log(n))$	$O(n^2)$

	Lower bound	Upper bound
realizing triangulations in an <i>n</i> -gon	$\Omega(n^{2-\epsilon})$	$O(n^2)$

	Lower bound	Upper bound
realizing all types of pants in $S_{0,n}$	$\Omega(n)$	$O(n^{\frac{4}{3}}\log^{\frac{2}{3}}n)$
realizing all triangles in an <i>n</i> -gon	$\Omega(n^{\frac{4}{3}})$	$O(n^{\frac{4}{3}})\log^{\frac{2}{3}}n)$

Thank You!