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. Tamari orders

on Dyck paths




Dyck paths

A Dyck path of size n=10 (size=number of up steps)

1 100 111160

Encoding: 1 for up steps, O for down steps



Covering relations in ordinary/greedy Tamari orders

e Ordinary: swap a down step and the shortest Dyck path that follows

CTamari 51]
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« Greedy: swap a down step and the longest Dyck path that follows

[Dermenjion 22(a)]
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An extension to m-Dyck paths

Def.Let m 2> 1. An m-Dyck path is a Dyck path in which all ascent lengths
are multiples of m. Equivalently, it consists of steps of size +m and -1.

The size is the number of (large) up steps.

A 2-Dyck path of size n=5.




An extension to m-Dyck paths

Def.Let m 2> 1. An m-Dyck path is a Dyck path in which all ascent lengths
are multiples of m. Equivalently, it consists of steps of size +m and -1.

The size is the number of (large) up steps.

A 2-Dyck path of size n=5.

We define similarly the ordinary and greedy Tamari orders on m-Dyck
paths.

[Bergeron & Preville-Ratelle 12, Dermeniian 27.(a)’



m-Tamari posets as subposets of I-Tamari

Observation: if a 1-Dyck path v has ascent lengths that are multiples
of m, the same holds for any w > v, for both orders.

Example: m=2
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1. Intervals in Tamari orders
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The number of ordinary m-Tamari intervals

[Chapoton 06 (m=1) -- MBM, Fusy & Préville-Ratelle 14-]

The number of intervals Lv,w] in the m-Tamari lattice of size n (i.e,,
N large up steps) is:

m+ 1 (Mm+1)’n+m
ton = .
’ n(mn—+1) n—1

Proof: a recursive construction of intervals, involving a “catalytic”
parameter: the number of contacts of the lower path v with the x-
axis.
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The number of ordinary m-Tamari intervals

[Chapoton 06 (m=1) -- MBM, Fusy & Préville-Ratelle 14-]

The number of intervals Lv,w] in the m-Tamari lattice of size n (i.e,,
N large up steps) is:

m+ 1 (Mm+1)’n+m
ton = .
’ n(mn—+1) n—1

Bijective proof (m=1) [Bernardi & Bonichon 0711
Bijection with triangulations (no loop nor multiple edge) with N+3

vertices
2 In + 1
t14L = .
’ nm—+1)\n—1

+ another bijection [Fang 18]

For m>], which type of maps do these numbers count?




NEW: The number of greedy m-Tamari intervals

[MBM & Chapoton 23(a)]

The number of intervals Lv,w]in the greedy m-Tamari order of size
N (i.e., n large up steps) is:

 (m+2)(m+ 1) ((m+1)n>
Imon = + 1) (mn + 2) n /)

Proof: a recursive construction of intervals, involving a new
“catalytic” parameter: the final descent of the upper path w.



NEW: The number of greedy m-Tamari intervals

[MBM & Chapoton 23(a)]

The number of intervals Lv,w]in the greedy m-Tamari order of size
N (i.e., n large up steps) is:

 (m+2)(m+ 1) ((m+1)n>
Imon = + 1) (mn + 2) n /)

Proof: a recursive construction of intervals, involving a new
“catalytic” parameter: the final descent of the upper path w.

Bijective proof? We know what these numbers count!



Planar constellations

[MBM & Schaeffer 00]

The number of planar (m+1)-constellations with n black faces is:

(Mm+2)(m+ 1) <(m+ 1)n>
(mn+1)(mn + 2) n '

Jm,n =

Constellation: a rooted planar map with bicolored faces
- black faces of degree (m+1)
- white faces of degree k(m+1), for some k>0.

[Lando & Zvonkine] |

m—+1=3
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Planar constellations

[MBM & Schaeffer 00]

The number of planar (m+1)-constellations with n black faces is:

(Mm+2)(m+ 1) <(m+ 1)n>
(mn+1)(mn + 2) n '

Jm,n =

Constellation: a rooted planar map with bicolored faces
- black faces of degree (m+1)
- white faces of degree k(m+1), for some k>0.

[Lando & Zvonkine] |

Bijection with
greedy intervals?

m—+1=3



I1l. A proof for greedy

intervals (m=1)




Some observations

Ordinary order and concatenation: if w and w, are Dyck paths,
ond w=w) . w2, then v < w iff v=v,. v2 with vi < wy and v2 < wa.

W) W2

Lv,w]=L[v;, wJ.Lvz, wal
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Some observations

Ordinary order and concatenation: if w) and w, are Dyck paths,
ond w=w) . w2, then v < w iff v=v,. v2 with vi < wy and v2 < wa.

W) W2

Lv,w]=L[v;, wJ.Lvz, wal

This is no longer true for greedy intervals:

ANAN

is NOT a greedy interval.

We took a different approach...
(which also works for ordinary intervals)



A new product for the greedy order

The star product
For viand vz, non-empty, let v = v) * v, be obtained by replacing the

last peak of vy by va.

Lemma
1T v=v*vy thenv << wiff w=w *w2 with vy < w and vz < wa.



Recursive description of greedy intervals (m=1)

Let J be the set of greedy intervals [v,w] of size >0.

« Case l: v is primitive (no contact apart from the endpoints)

N

Jy~ {010,107} & J



Recursive description of greedy intervals (m=1)

Let J be the set of greedy intervals [v,w] of size >0.

e Case 2: v is not primitive. Then v = v * vy, with v; = Iv'0.10.
Thus w = w) * w2 with vy < wy and vz < wa. y

Cv,w] [v, wi] Lvz, w2l



Recursive description of greedy intervals (m=1)

Let J be the set of greedy intervals [v,w] of size >0.

e Case 2: v is not primitive. Then v = v * vy, with vi = Iv'0.10.
Thus w = w) * w2 with vy < wy and vz < wa. y

Cv,w] [v, wi] Lvz, w2l

The interval Lv;, w1
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Let J be the set of greedy intervals [v,w] of size >0.
Let J(x)=J(tix) be the GF that counts them by size (t) and length

of the final descent of the upper path (x).



Recursive description of greedy intervals (m=1)

Let J be the set of greedy intervals [v,w] of size >0.
Let J(x)=J(tix) be the GF that counts them by size (t) and length
of the final descent of the upper path (x).

« Case l: v is primitive (no contact apart from the endpoints):

J1(x) = tx + txJ(x).




Recursive description of greedy intervals (m=1)

Let J be the set of greedy intervals [v,w] of size >0.
Let J(x)=J(tix) be the GF that counts them by size (t) and length

of the final descent of the upper path (x).

« Case l: v is primitive (no contact apart from the endpoints):

J1(x) = tx + txJ(x).

« Case 2: v is not primitive:




Recursive description of greedy intervals (m=1)

Let J be the set of greedy intervals [v,w] of size >0.
Let J(x)=J(tix) be the GF that counts them by size (t) and length
of the final descent of the upper path (x).

« Case l: v is primitive (no contact apart from the endpoints):

J1(x) = tx + tx](x).

« Case 2: v is not primitive:




Recursive description of greedy intervals (m=1)

Let J be the set of greedy intervals [v,w] of size >0.
Let J(x)=J(tix) be the GF that counts them by size (t) and length
of the final descent of the upper path (x).

« Case l: v is primitive (no contact apart from the endpoints):
J1(x) = tx + txJ(x).
xJ1(x) —J1(1
J1 (X)_ 1]1( )](x).
J

« Case 2: v is not primitive:




Recursive description of greedy intervals (m=1)

Let J be the set of greedy intervals [v,w] of size >0.
Let J(x)=J(tix) be the GF that counts them by size (t) and length

of the final descent of the upper path (x).

« Case l: v is primitive (no contact apart from the endpoints):

J1(x) = tx + txJ(x).
xJ1(x) —J1 (1)

X — 1

J(x).

« Case 2: v is not primitive:

A discrete differential equation:

x*J(x) = J(1)

X — 1

J(x).

J(x) =tx +t(1+2x)J(x) + t



Recursive description of greedy intervals (m=1)

Let J be the set of greedy intervals [v,w] of size >0.
Let J(x)=J(tix) be the GF that counts them by size (t) and length

of the final descent of the upper path (x).

« Case l: v is primitive (no contact apart from the endpoints):

J1(x) = tx + txJ(x).
xJ1(x) —J1 (1)

X — 1

J(x).

« Case 2: v is not primitive:

A discrete differential equation:

x*J(x) = J(1)

x — 1
— Solution via the quadratic method [Brown 65]

1) - (1—8t)3/2 — 1+ 12t — 24t? Z .ol n on
N 32t2 n+1 Jm+2)\n '

J(x).

J(x) =tx +t(1+2x)J(x) + t




IV. When m Is general:

sketch of the proof
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)/ A discrete differential equation

e The equation:
x2J(x) =t (x +x2](x)A) ™ (),
with

F(x) —F(T)
x—1



)/ A discrete differential equation

e The equation:

with

F(x) —F(1)

AF(x) := —

« Higher and higher derivatives of J(x) occur, since, e.g
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« Higher and higher derivatives of J(x) occur, since, e.g
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2/ Guessing a parametrization of the solution

« From small values of m, one guesses

(m+2)(m+ 1) ((m+ 1)n)tn

IM=js=Y

= (mn + 1)(mn + 2) n

or equivalently, after introducing 2=2(t) such that
t
(1—(m+1Z2)™

L m+ 2
W= G—mnz7 (1 < 2 )Z)

« An equivalent formulation: if we write t =z(1 — (M + 1)z)™, then JQ)
becomes a series in z instead of t, which is rational:

z m-+ 2
””:m—mw4mzo<2>%'

/ =




2/ Guessing a parametrization of the solution

« From small values of m, it seems that the dependency in x can also
be parametrized rationally with
I—(T4+u+---+umz
I—(m+1)z

X=U

(whilet =z(1—(m+1)z)™, as before).



2/ Guessing a parametrization of the solution

« From small values of m, it seems that the dependency in x can also
be parametrized rationally with
I—(T4+u+---+umz
I—(m+1)z

X=U

(whilet =z(1—(m+1)z)™, as before).

Indeed, with this change of variables, one conjectures:

XZ Zum+2 ]

) =z ot

X — 1



3/ Checking that the guessed solution is correct

« The equation
x?J(x) = t (x +x2J(x)a) " ().

« The guessed solution, in parametric form:
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(F(x) —F(1))
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3/ Checking that the guessed solution is correct

« The equation
x?J(x) = t (x +x2J(x)a) " ().

« The guessed solution, in parametric form:

X zym+2 1

](X):1—(m+1)z.u—1°

X — 1

« The operator x + x*J(x)A defined by
x*](x)

X — 1

(x + XZJ(X)A) F(x) := xF(x) + (F(x) — F(1))

becomes 1 where
1—(m+1 )z/\ '

AH(u) :=uH(u) + zu

H(u) —u™tTH(T)
u— 1 '

« One has to check a polynomial identity:

AMH+2) (1) = ym+2 <1 —zZue(er] - e)) :

e=0
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Final remarks and questions

e This approach can also be used for m-Tamari intervals
(new proof of the 2014 result)

* A bijective proof must be found!

Conjecture: a bijection between

> greedy m-Tamari intervals Lv,w] where w has nk ascents of
length k (i.e., k large up steps) for each K,

» (m+1)-constellations with Nk white faces of degree k(m+1).

« Greedy v-Tamari order [Dermenjion 22(a)l: total number of

intervals for v of size N7
cf. [Fang & Preville-Ratelle 17]

« Greedy 1-Tamari intervals form a subset of ordinary I-Tamari
intervals: which triangulations do they correspond to?
cf. [Bernardi & Bonichon 071]



‘ Thanks f‘or your »
aﬂenhon




