Greedy Tamari intervals

with Frédéric Chapoton,
IRMA, Strasbourg

Mireille Bousquet-Mélou
CNRS, LaBRI, Université de Bordeaux, France

Des tamaris gloutons?

Des tamaris

Tamarinier, feuilles et fruits

Des tamaris gloutons?

Des tamaris

Tamarinier, feuilles et fruits

Un tamarin empereur

Des tamaris gloutons?

Des tamaris

Tamarinier, feuilles et fruits

Un tamarin empereur

Un glouton

Des tamaris gloutons?

Dov Tamari (1911-2006) *ie

Un tamarin empereur
inier, feuilles et fruits

Un glouton

I. Tamari orders on Dyck paths

Dyck paths

A Dyck path of size $n=10$ (size=number of up steps)

Encoding: I for up steps, 0 for down steps

Covering relations in ordinary/greedy Tamari orders

- Ordinary: swap a down step and the shortest Dyck path that follows

[Tamari 51]

Covering relations in ordinary/greedy Tamari orders

- Ordinary: swap a down step and the shortest Dyck path that follows

[Tamari 51]
- Greedy: swap a down step and the longest Dyck path that follows

[Dermenjian 22(a)]

Covering relations in ordinary/greedy Tamari orders

- Ordinary

- Greedy

Covering relations in ordinary/greedy Tamari orders

- Greedy

The ordinary/greedy Tamari orders $(n=3)$

greedy
ordinary

The ordinary/greedy Tamari orders ($n=4$)

An extension to m-Dyck paths

Def. Let $m \geqslant 1$. An m-Dyck path is a Dyck path in which all ascent lengths are multiples of m. Equivalently, it consists of steps of size $+m$ and -1 .

The size is the number of (large) up steps.

A 2-Dyck path of size $n=5$.

An extension to m-Dyck paths

Def. Let $m \geqslant 1$. An m-Dyck path is a Dyck path in which all ascent lengths are multiples of m. Equivalently, it consists of steps of size $+m$ and -1 .

The size is the number of (large) up steps.

A 2-Dyck path of size $n=5$.

We define similarly the ordinary and greedy Tamari orders on m-Dyck paths.
[Bergeron \& Préville-Ratelle 12, Dermenjian 2.2.(a)]

m-Tamari posets as subposets of 1-Tamari

Observation: if a l-Dyck path v has ascent lengths that are multiples of m, the same holds for any $w \geqslant v$, for both orders.

Example: $m=2$

m-Tamari posets as subposets of 1-Tamari

Observation: if a l-Dyck path v has ascent lengths that are multiples of m, the same holds for any $w \geqslant v$, for both orders.

Example: $m=2$

The m-Tamari poset of size n is a subposet of the l-Tamari poset of size mn .

m-Tamari posets as subposets of 1-Tamari

Example: $m=2=n$

II. Intervals in Tamari orders

$[v, w], v \preccurlyeq w$

The number of ordinary m-Tamari intervals

[Chapoton 06 ($m=1$) -- MBM, Fusy \& Préville-Ratelle 14]
The number of intervals $[v, w]$ in the m-Tamari lattice of size n (i.e., n large up steps) is:

$$
t_{m, n}=\frac{m+1}{n(m n+1)}\binom{(m+1)^{2} n+m}{n-1} .
$$

Proof: a recursive construction of intervals, involving a "catalytic" parameter: the number of contacts of the lower path v with the x axis.

The number of ordinary m-Tamari intervals

[Chapoton 06 ($m=1$) -- MBM, Fusy \& Préville-Ratelle 14]
The number of intervals $[v, w]$ in the m-Tamari lattice of size n (i.e., n large up steps) is:

$$
t_{m, n}=\frac{m+1}{n(m n+1)}\binom{(m+1)^{2} n+m}{n-1} .
$$

Bijective proof ($m=1$) [Bernardi \& Bonichon 07]
Bijection with triangulations (no loop nor multiple edge) with $n+3$ vertices

$$
t_{1, n}=\frac{2}{n(n+1)}\binom{4 n+1}{n-1} .
$$

The number of ordinary m-Tamari intervals

[Chapoton 06 ($m=1$) -- MBM, Fusy \& Préville-Ratelle 14]
The number of intervals $[v, w]$ in the m-Tamari lattice of size n (i.e., n large up steps) is:

$$
t_{m, n}=\frac{m+1}{n(m n+1)}\binom{(m+1)^{2} n+m}{n-1} .
$$

Bijective proof ($m=1$) [Bernardi \& Bonichon 07]
Bijection with triangulations (no loop nor multiple edge) with $n+3$ vertices

$$
t_{1, n}=\frac{2}{n(n+1)}\binom{4 n+1}{n-1} .
$$

+ another bijection [Fang 18]

The number of ordinary m-Tamari intervals

[Chapoton 06 ($m=1$) -- MBM, Fusy \& Préville-Ratelle 14]
The number of intervals $[v, w]$ in the m-Tamari lattice of size n (i.e., n large up steps) is:

$$
t_{m, n}=\frac{m+1}{n(m n+1)}\binom{(m+1)^{2} n+m}{n-1} .
$$

Bijective proof ($m=1$) [Bernardi \& Bonichon 07]
Bijection with triangulations (no loop nor multiple edge) with $n+3$ vertices

$$
t_{1, n}=\frac{2}{n(n+1)}\binom{4 n+1}{n-1} .
$$

+ another bijection [Fang 18]

For $m>1$, which type of maps do these numbers count?

NEW: The number of greedy m-Tamari intervals

[MBM \& Chapoton 23(a)]

The number of intervals $[v, w]$ in the greedy m-Tamari order of size n (i.e., n large up steps) is:

$$
g_{m, n}=\frac{(m+2)(m+1)^{n-1}}{(m n+1)(m n+2)}\binom{(m+1) n}{n}
$$

Proof: a recursive construction of intervals, involving a new "catalytic" parameter: the final descent of the upper path w.

NEW: The number of greedy m-Tamari intervals

[MBM \& Chapoton 23(a)]

The number of intervals $[v, w]$ in the greedy m-Tamari order of size n (i.e., n large up steps) is:

$$
g_{m, n}=\frac{(m+2)(m+1)^{n-1}}{(m n+1)(m n+2)}\binom{(m+1) n}{n}
$$

Proof: a recursive construction of intervals, involving a new "catalytic" parameter: the final descent of the upper path w.

Bijective proof? We know what these numbers count!

Planar constellations

[MBM \& Schaeffer 00]

The number of planar ($m+1$)-constellations with n black faces is:

$$
g_{m, n}=\frac{(m+2)(m+1)^{n-1}}{(m n+1)(m n+2)}\binom{(m+1) n}{n} .
$$

Constellation: a rooted planar map with bicolored faces

- black faces of degree ($m+1$)
- white faces of degree $k(m+1)$, for some $k>0$.
[Lando \& Zvonkine]

$$
m+1=3
$$

Planar constellations

[MBM \& Schaeffer 00]

The number of planar ($m+1$)-constellations with n black faces is:

$$
g_{m, n}=\frac{(m+2)(m+1)^{n-1}}{(m n+1)(m n+2)}\binom{(m+1) n}{n} .
$$

Constellation: a rooted planar map with bicolored faces

- black faces of degree ($m+1$)
- white faces of degree $k(m+1)$, for some $k>0$.
[Lando \& Zvonkine]

$$
m+1=3
$$

Planar constellations

[MBM \& Schaeffer 00]

The number of planar $(m+1)$-constellations with n black faces is:

$$
g_{m, n}=\frac{(m+2)(m+1)^{n-1}}{(m n+1)(m n+2)}\binom{(m+1) n}{n} .
$$

Constellation: a rooted planar map with bicolored faces

- black faces of degree ($m+1$)
- white faces of degree $k(m+1)$, for some $k>0$.
[Lando \& Zvonkine]

Bijection with

 greedy intervals?

III. A proof for greedy

 intervals (m=1)Some observations
Ordinary order and concatenation: if w_{1} and w_{2} are Dyck paths, and $w=w_{1} . w_{2}$, then $v \leqslant w$ iff $v=v_{1} . v_{2}$ with $v_{1} \leqslant w_{1}$ and $v_{2} \leqslant w_{2}$.

Some observations

Ordinary order and concatenation: if w_{1} and w_{2} are Dyck paths, and $w=w_{1} . w_{2}$, then $v \leqslant w$ iff $v=v_{1} . v_{2}$ with $v_{1} \leqslant w_{1}$ and $v_{2} \leqslant w_{2}$.

$$
[v, w]=\left[v_{1}, w_{1}\right] .\left[v_{2}, w_{2}\right]
$$

This is no longer true for greedy intervals:

is NOT a greedy interval.

Some observations

Ordinary order and concatenation: if w_{1} and w_{2} are Dyck paths, and $w=w_{1} . w_{2}$, then $v \leqslant w$ iff $v=v_{1} . v_{2}$ with $v_{1} \leqslant w_{1}$ and $v_{2} \leqslant w_{2}$.

$$
[v, w]=\left[v_{1}, w_{1}\right] .\left[v_{2}, w_{2}\right]
$$

This is no longer true for greedy intervals:

is NOT a greedy interval.
We took a different approach...
(which also works for ordinary intervals)

A new product for the greedy order

The star product
For v_{1} and v_{2} non-empty, let $v=v_{1} * v_{2}$ be obtained by replacing the last peak of v_{1} by v_{2}.

$$
v_{1} * v_{2}
$$

Lemma
If $v=v_{1} * v_{2}$, then $v \leqslant w$ iff $w=w_{1} * w_{2}$ with $v_{1} \leqslant w_{1}$ and $v_{2} \leqslant w_{2}$.

Recursive description of greedy intervals (m=l)
Let J be the set of greedy intervals $[v, w]$ of size >0.

- Case l: v is primitive (no contact apart from the endpoints)

$$
J_{1} \approx\{[10,10]\} \oplus J
$$

Recursive description of greedy intervals (m=l)
Let J be the set of greedy intervals $[v, w]$ of size >0.

- Case 2: v is not primitive. Then $v=v_{1} * v_{2}$, with $v_{1}=1 v^{\prime} 0.10$.

Thus $w=w_{1} * w_{2}$ with $v_{1} \leqslant w_{1}$ and $v_{2} \leqslant w_{2}$.

$[v, w]$

$\left[v_{1}, w_{1}\right]$

$\left[v_{2}, w_{2}\right]$

Recursive description of greedy intervals (m=l)
Let J be the set of greedy intervals $[v, w]$ of size >0.

- Case 2: v is not primitive. Then $v=v_{1} * v_{2}$, with $v_{1}=1 v^{\prime} 0.10$.

Thus $w=w_{1} * w_{2}$ with $v_{1} \leqslant w_{1}$ and $v_{2} \leqslant w_{2}$.

$[v, w]$

$\left[v_{1}, w_{1}\right]$

$\left[v_{2}, w_{2}\right]$

The interval $\left[v_{1}, w_{1}\right]$:

$\approx J_{1}$

Recursive description of greedy intervals ($m=1$)

Let J be the set of greedy intervals $[v, w]$ of size >0. Let $J(x)=J(t ; x)$ be the GF that counts them by size (t) and length of the final descent of the upper path (x).

Recursive description of greedy intervals ($m=1$)

Let J be the set of greedy intervals $[v, w]$ of size >0.
Let $J(x)=J(t ; x)$ be the GF that counts them by size (t) and length of the final descent of the upper path (x).

- Case l: v is primitive (no contact apart from the endpoints):

$$
\mathrm{J}_{1}(\mathrm{x})=\mathrm{tx}+\mathrm{txJ}(\mathrm{x})
$$

Recursive description of greedy intervals ($m=1$)

Let J be the set of greedy intervals $[v, \omega]$ of size >0.
Let $J(x)=J(t ; x)$ be the GF that counts them by size (t) and length of the final descent of the upper path (x).

- Case l: v is primitive (no contact apart from the endpoints):

$$
\mathrm{J}_{1}(\mathrm{x})=\mathrm{tx}+\mathrm{txJ}(\mathrm{x})
$$

- Case 2: v is not primitive:

Recursive description of greedy intervals ($m=1$)

Let J be the set of greedy intervals $[v, \omega]$ of size >0.
Let $J(x)=J(t ; x)$ be the GF that counts them by size (t) and length of the final descent of the upper path (x).

- Case l: v is primitive (no contact apart from the endpoints):

$$
\mathrm{J}_{1}(\mathrm{x})=\mathrm{tx}+\mathrm{txJ}(\mathrm{x})
$$

- Case 2: v is not primitive:

Recursive description of greedy intervals ($m=1$)

Let J be the set of greedy intervals $[v, w]$ of size >0.
Let $J(x)=J(t ; x)$ be the GF that counts them by size (t) and length of the final descent of the upper path (x).

- Case I: v is primitive (no contact apart from the endpoints):

$$
\mathrm{J}_{1}(\mathrm{x})=\mathrm{tx}+\mathrm{txJ}(\mathrm{x})
$$

- Case $2: v$ is not primitive: $\frac{x J_{1}(x)-J_{1}(1)}{x-1} J(x)$.

Recursive description of greedy intervals ($m=1$)

Let J be the set of greedy intervals $[v, \omega]$ of size >0.
Let $J(x)=J(t ; x)$ be the GF that counts them by size (t) and length of the final descent of the upper path (x).

- Case l: v is primitive (no contact apart from the endpoints):

$$
\mathrm{J}_{1}(\mathrm{x})=\mathrm{tx}+\mathrm{txJ}(\mathrm{x})
$$

- Case 2: v is not primitive: $\frac{x J_{1}(x)-J_{1}(1)}{x-1} J(x)$.

A discrete differential equation:

$$
J(x)=t x+t(1+2 x) J(x)+t \frac{x^{2} J(x)-J(1)}{x-1} J(x)
$$

Recursive description of greedy intervals ($m=1$)

Let J be the set of greedy intervals $[v, \omega]$ of size >0.
Let $J(x)=J(t ; x)$ be the GF that counts them by size (t) and length of the final descent of the upper path (x).

- Case l: v is primitive (no contact apart from the endpoints):

$$
\mathrm{J}_{1}(\mathrm{x})=\mathrm{tx}+\mathrm{txJ}(\mathrm{x})
$$

- Case $2: \mathrm{v}$ is not primitive: $\frac{x J_{1}(x)-J_{1}(1)}{x-1} J(x)$.

A discrete differential equation:

$$
J(x)=t x+t(1+2 x) J(x)+t \frac{x^{2} J(x)-J(1)}{x-1} J(x)
$$

\rightarrow Solution via the quadratic method [Brown 65]

$$
J(1)=\frac{(1-8 t)^{3 / 2}-1+12 t-24 t^{2}}{32 t^{2}}=\sum_{n \geq 1} \frac{3 \cdot 2^{n-1}}{(n+1)(n+2)}\binom{2 n}{n} t^{n}
$$

IV. When m is general: sketch of the proof

// A discrete differential equation

Let \mathcal{J} be the set of greedy intervals $[v, \omega]$ of size >0.

- Instead of 2 cases, we have ($\mathrm{m}+\mathrm{l}$) families $J_{1}, . ., J_{m+1}=$ J, that depend on the form of the lower path v.

// A discrete differential equation

Let \mathcal{J} be the set of greedy intervals $[v, \omega]$ of size >0.

- Instead of 2 cases, we have ($\mathrm{m}+\mathrm{l}$) families $J_{1}, \ldots, J_{m+1}=$ J, that depend on the form of the lower path v.
$m=2$

// A discrete differential equation

Let J be the set of greedy intervals $[v, \omega]$ of size >0.

- Instead of 2 cases, we have ($\mathrm{m}+\mathrm{l}$) families $J_{1}, \ldots, J_{m+1}=$ J, that depend on the form of the lower path v.
$m=2$

- Their Gfs satisfy,

$$
J_{i}(x)=J_{i-1}(x)+J(x) \frac{x J_{i-1}(x)-x^{m+1-i} J_{i-1}(1)}{x-1}
$$

with $J_{0}(x)=t x^{m}$.

/ A discrete differential equation

Let J be the set of greedy intervals $[v, \omega]$ of size >0.

- Instead of 2 cases, we have ($m+1$) families $J_{1}, \ldots, J_{m+1}=$ J, that depend on the form of the lower path v.
$m=2$

$$
[v, w]
$$

- Their Gfs satisfy,

$$
J_{i}(x)=J_{i-1}(x)+J(x) \frac{x J_{i-1}(x)-x^{m+1-i} J_{i-1}(1)}{x-1}
$$

with $J_{0}(x)=t x^{m}$. In compact form:

$$
x^{2} J(x)=t\left(x+x^{2} J(x) \Delta\right)^{(m+2)}(1)
$$

with

$$
\Delta F(x):=\frac{F(x)-F(1)}{x-1}
$$

/ A discrete differential equation

Let J be the set of greedy intervals $[v, \omega]$ of size >0.

- Instead of 2 cases, we have ($m+1$) families $J_{1}, \ldots, J_{m+1}=$ J, that depend on the form of the lower path v.
$m=2$

$$
[v, w]
$$

- Their Gfs satisfy,

$$
J_{i}(x)=J_{i-1}(x)+J(x) \frac{x J_{i-1}(x)-x^{m+1-i} J_{i-1}(1)}{x-1}
$$

with $J_{0}(x)=t x^{m}$. In compact form:

$$
x^{2} J(x)=t\left(x+x^{2} J(x) \Delta\right)^{(m+2)}(1)
$$

with

$$
\Delta F(x):=\frac{F(x)-F(1)}{x-1}
$$

// A discrete differential equation

- The equation:

$$
x^{2} J(x)=t\left(x+x^{2} J(x) \Delta\right)^{(m+2)}(1)
$$

with

$$
\Delta F(x):=\frac{F(x)-F(1)}{x-1}
$$

// A discrete differential equation

- The equation:

$$
x^{2} \mathrm{~J}(x)=\mathrm{t}\left(x+x^{2} \mathrm{~J}(x) \Delta\right)^{(m+2)}(1)
$$

with

$$
\Delta F(x):=\frac{F(x)-F(1)}{x-1}
$$

- Higher and higher derivatives of $J(x)$ occur, since, e. 9

$$
\Delta^{(2)} F(x)=\frac{F(x)-F(1)-(x-1) F^{\prime}(1)}{(x-1)^{2}}
$$

// A discrete differential equation

- The equation:

$$
x^{2} J(x)=t\left(x+x^{2} J(x) \Delta\right)^{(m+2)}(1)
$$

with

$$
\Delta F(x):=\frac{F(x)-F(1)}{x-1}
$$

- Higher and higher derivatives of $J(x)$ occur, since, e. 9

$$
\Delta^{(2)} F(x)=\frac{F(x)-F(1)-(x-1) F^{\prime}(1)}{(x-1)^{2}}
$$

The equation for $J(x)$ involves the m series $J(1), J^{\prime}(1), \ldots, d^{m-1} J(1)$.

// A discrete differential equation

- The equation:

$$
x^{2} J(x)=t\left(x+x^{2} J(x) \Delta\right)^{(m+2)}(1)
$$

with

$$
\Delta F(x):=\frac{F(x)-F(1)}{x-1}
$$

- Higher and higher derivatives of $J(x)$ occur, since, e. 9

$$
\Delta^{(2)} F(x)=\frac{F(x)-F(1)-(x-1) F^{\prime}(1)}{(x-1)^{2}}
$$

The equation for $J(x)$ involves the m series $J(1), J^{\prime}(1), \ldots, d^{m-1} J(1)$.

- The solution of such equations is always algebraic.

A general procedure solves the equation for small values of m and yields polynomial equations for these m series.
[MBM \&Jehanne 06, Bostan, Notarantonio \& Safey El Din 23(a)]

// A discrete differential equation

- The equation:

$$
x^{2} J(x)=t\left(x+x^{2} J(x) \Delta\right)^{(m+2)}(1)
$$

with

$$
\Delta F(x):=\frac{F(x)-F(1)}{x-1}
$$

Guess
 \& check

- Higher and higher derivatives of $J(x)$ occur, since, e. 9

$$
\Delta^{(2)} F(x)=\frac{F(x)-F(1)-(x-1) F^{\prime}(1)}{(x-1)^{2}}
$$

The equation for $J(x)$ involves the m series $J(1), J^{\prime}(1), \ldots, d^{m-1} J(1)$.

- The solution of such equations is always algebraic.

A general procedure solves the equation for small values of m and yields polynomial equations for these m series.
[MBM \&Jehanne 06, Bostan, Notarantonio \& Safey El Din 23(a)]

2/ Guessing a parametrization of the solution

- From small values of m, one guesses

$$
J(1) \equiv J(t ; 1)=\sum_{n \geq 1} \frac{(m+2)(m+1)^{n-1}}{(m n+1)(m n+2)}\binom{(m+1) n}{n} t^{n}
$$

2/ Guessing a parametrization of the solution

- From small values of m, one guesses

$$
J(1) \equiv J(t ; 1)=\sum_{n \geq 1} \frac{(m+2)(m+1)^{n-1}}{(m n+1)(m n+2)}\binom{(m+1) n}{n} t^{n}
$$

or equivalently, after introducing $Z=Z(t)$ such that

$$
\begin{gathered}
Z=\frac{t}{(1-(m+1) Z)^{m}} \\
J(1)=\frac{Z}{(1-(m+1) Z)^{2}}\left(1-\binom{m+2}{2} Z\right)
\end{gathered}
$$

2/ Guessing a parametrization of the solution

- From small values of m, one guesses

$$
J(1) \equiv J(t ; 1)=\sum_{n \geq 1} \frac{(m+2)(m+1)^{n-1}}{(m n+1)(m n+2)}\binom{(m+1) n}{n} t^{n}
$$

or equivalently, after introducing $Z=Z(t)$ such that

$$
\begin{gathered}
Z=\frac{t}{(1-(m+1) Z)^{m}} \\
J(1)=\frac{Z}{(1-(m+1) Z)^{2}}\left(1-\binom{m+2}{2} Z\right)
\end{gathered}
$$

- An equivalent formulation: if we write $t=z(1-(m+1) z)^{m}$, then $J(1)$ becomes a series in z instead of t, which is rational:

$$
J(1)=\frac{z}{(1-(m+1) z)^{2}}\left(1-\binom{m+2}{2} z\right)
$$

2/ Guessing a parametrization of the solution

- From small values of m, it seems that the dependency in x can also be parametrized rationally with

$$
x=u \frac{1-\left(1+u+\cdots+u^{m}\right) z}{1-(m+1) z}
$$

(while $t=z(1-(m+1) z)^{m}$, as before).

2/ Guessing a parametrization of the solution

- From small values of m, it seems that the dependency in x can also be parametrized rationally with

$$
x=u \frac{1-\left(1+u+\cdots+u^{m}\right) z}{1-(m+1) z}
$$

(while $t=z(1-(m+1) z)^{m}$, as before).
Indeed, with this change of variables, one conjectures:

$$
\frac{x^{2}}{x-1} J(x)=\frac{z u^{m+2}}{1-(m+1) z} \cdot \frac{1}{u-1}
$$

3/ Checking that the guessed solution is correct

- The equation

$$
x^{2} J(x)=t\left(x+x^{2} J(x) \Delta\right)^{(m+2)}(1)
$$

- The guessed solution, in parametric form:

$$
\frac{x^{2}}{x-1} J(x)=\frac{z u^{m+2}}{1-(m+1) z} \cdot \frac{1}{u-1} .
$$

3/ Checking that the guessed solution is correct

- The equation

$$
x^{2} J(x)=t\left(x+x^{2} J(x) \Delta\right)^{(m+2)}(1)
$$

- The guessed solution, in parametric form:

$$
\frac{x^{2}}{x-1} J(x)=\frac{z u^{m+2}}{1-(m+1) z} \cdot \frac{1}{u-1}
$$

- The operator $x+x^{2} J(x) \Delta$ defined by

$$
\left(x+x^{2} J(x) \Delta\right) F(x):=x F(x)+\frac{x^{2} J(x)}{x-1}(F(x)-F(1))
$$

3/ Checking that the guessed solution is correct

- The equation

$$
x^{2} J(x)=t\left(x+x^{2} J(x) \Delta\right)^{(m+2)}(1)
$$

- The guessed solution, in parametric form:

$$
\frac{x^{2}}{x-1} J(x)=\frac{z u^{m+2}}{1-(m+1) z} \cdot \frac{1}{u-1}
$$

- The operator $x+x^{2} J(x) \Delta$ defined by

$$
\left(x+x^{2} J(x) \Delta\right) F(x):=x F(x)+\frac{x^{2} J(x)}{x-1}(F(x)-F(1))
$$

becomes $\frac{1}{1-(m+1) z} \Lambda$, where

$$
\Lambda H(u):=u H(u)+z u \frac{H(u)-u^{m+1} H(1)}{u-1}
$$

3/ Checking that the guessed solution is correct

- The equation

$$
x^{2} J(x)=t\left(x+x^{2} J(x) \Delta\right)^{(m+2)}(1)
$$

- The guessed solution, in parametric form:

$$
\frac{x^{2}}{x-1} J(x)=\frac{z u^{m+2}}{1-(m+1) z} \cdot \frac{1}{u-1}
$$

- The operator $x+x^{2} J(x) \Delta$ defined by

$$
\left(x+x^{2} J(x) \Delta\right) F(x):=x F(x)+\frac{x^{2} J(x)}{x-1}(F(x)-F(1))
$$

becomes $\frac{1}{1-(m+1) z} \Lambda$, where

$$
\Lambda H(u):=u H(u)+z u \frac{H(u)-u^{m+1} H(1)}{u-1}
$$

- One has to check a polynomial identity:

$$
\Lambda^{(m+2)}(1)=u^{m+2}\left(1-z \sum_{e=0}^{m} u^{e}(m+1-e)\right)
$$

V. What else?

Final remarks and questions

- This approach can also be used for ordinary m-Tamari intervals (new proof of the 2014 result)

Final remarks and questions

- This approach can also be used for ordinary m-Tamari intervals (new proof of the 2014 result)
- A bijective proof must be found!

Final remarks and questions

- This approach can also be used for ordinary m-Tamari intervals (new proof of the 2014 result)
- A bijective proof must be found!

Conjecture: a bijection between
\rightarrow greedy m-Tamari intervals $[v, w]$ where w has n_{k} ascents of length k (i.e., k large up steps) for each k,
$\rightarrow(m+1)$-constellations with n_{k} white faces of degree $k(m+1)$.

Final remarks and questions

- This approach can also be used for ordinary m-Tamari intervals (new proof of the 2014 result)
- A bijective proof must be found!

Conjecture: a bijection between
\rightarrow greedy m-Tamari intervals $[v, w]$ where w has n_{k} ascents of length k (i.e., k large up steps) for each k,
$\rightarrow(m+1)$-constellations with n_{k} white faces of degree $k(m+1)$.

- Greedy ν-Tamari order [Dermenjian 22(a)]: total number of intervals for ν of size n ? cf. [Fang \& Préville-Ratelle 17]

Final remarks and questions

- This approach can also be used for ordinary m-Tamari intervals (new proof of the 2014 result)
- A bijective proof must be found!

Conjecture: a bijection between
\rightarrow greedy m-Tamari intervals $[v, w]$ where w has n_{k} ascents of length k (i.e., k large up steps) for each k,
$\rightarrow(m+1)$-constellations with n_{k} white faces of degree $k(m+1)$.

- Greedy ν-Tamari order [Dermenjian 22(a)]: total number of intervals for ν of size n ? cf. [Fang \& Préville-Ratelle 17]
- Greedy I-Tamari intervals form a subset of ordinary l-Tamari intervals: which triangulations do they correspond to? cf. [Bernardi \& Bonichon 07]

