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I. Tamari orders
on Dyck paths



Dyck paths

A Dyck path of size n=10 (size=number of up steps)

Encoding: 1 for up steps, 0 for down steps

1   1  0  0   1  1  1  1  0

valley
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● Ordinary: swap a down step and the shortest Dyck path that follows

                                                                                            
                                                                                             [Tamari 51]

Covering relations in ordinary/greedy Tamari orders

v w⋖
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● Greedy: swap a down step and the longest Dyck path that follows

                                                                                 [Dermenjian 22(a)]

● Ordinary: swap a down step and the shortest Dyck path that follows

                                                                                            
                                                                                             [Tamari 51]

Covering relations in ordinary/greedy Tamari orders

v w

v w⋖

⋖
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● Greedy 

                              ~ a sequence of ordinary coverings                     

Covering relations in ordinary/greedy Tamari orders

v =

● Ordinary

w =

w’ =
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● Greedy 

                              ~ a sequence of ordinary coverings                     

Covering relations in ordinary/greedy Tamari orders

v =

● Ordinary

w =

w’ =

Exercise
n=3

(6 steps)
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The ordinary/greedy Tamari orders (n=3)

ordinary

greedy
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The ordinary/greedy Tamari orders (n=4)

greedy

ordinary
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An extension to m-Dyck paths

Def. Let m ≽ 1. An m-Dyck path is a Dyck path in which all ascent lengths 
are multiples of m. Equivalently, it consists of steps of size +m and -1.
The size is the number of (large) up steps.

A 2-Dyck path of size n=5.
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An extension to m-Dyck paths

Def. Let m ≽ 1. An m-Dyck path is a Dyck path in which all ascent lengths 
are multiples of m. Equivalently, it consists of steps of size +m and -1.
The size is the number of (large) up steps.

A 2-Dyck path of size n=5.

We define similarly the ordinary and greedy Tamari orders on m-Dyck 
paths.                      
                                  [Bergeron & Prévil le-Ratelle 12, Dermenjian 22(a)]9 / 30



m-Tamari posets as subposets of 1-Tamari
Observation: if a 1-Dyck path v has ascent lengths that are multiples 
of m, the same holds for any w ≽ v, for both orders.

Example: m=2

⋖

⋖v w

w’v
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m-Tamari posets as subposets of 1-Tamari
Observation: if a 1-Dyck path v has ascent lengths that are multiples 
of m, the same holds for any w ≽ v, for both orders.

Example: m=2

⋖

⋖v w

w’v

The m-Tamari poset of size n is a subposet of the 1-Tamari 
poset of size mn. 10 / 
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m-Tamari posets as subposets of 1-Tamari
Example: m=2=n
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II. Intervals in Tamari orders

[v,w], v ≼ w



The number of ordinary m-Tamari intervals

[Chapoton 06 (m=1) -- MBM, Fusy & Prévil le-Ratelle 14]
The number of intervals [v,w] in the m-Tamari lattice of size n (i.e., 
n large up steps) is:

Proof: a recursive construction of intervals, involving a “catalytic” 
parameter: the number of contacts of the lower path v with the x-
axis. 
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The number of ordinary m-Tamari intervals

[Chapoton 06 (m=1) -- MBM, Fusy & Prévil le-Ratelle 14]
The number of intervals [v,w] in the m-Tamari lattice of size n (i.e., 
n large up steps) is:

Bijective proof (m=1)  [Bernardi & Bonichon 07]
Bijection with triangulations (no loop nor multiple edge) with n+3 
vertices

For m>1, which type of maps do these numbers count?

+ another bijection  [Fang 18]
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NEW: The number of greedy m-Tamari intervals

[MBM & Chapoton 23(a)]
The number of intervals [v,w] in the greedy m-Tamari order of size 
n (i.e., n large up steps) is:

Proof: a recursive construction of intervals, involving a new 
“catalytic” parameter: the final descent of the upper path w. 
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NEW: The number of greedy m-Tamari intervals

[MBM & Chapoton 23(a)]
The number of intervals [v,w] in the greedy m-Tamari order of size 
n (i.e., n large up steps) is:

Proof: a recursive construction of intervals, involving a new 
“catalytic” parameter: the final descent of the upper path w. 

Bijective proof? We know what these numbers count!
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[MBM & Schaeffer 00]
The number of planar (m+1)-constellations with n black faces is:

Planar constellations

Constellation: a rooted planar map with bicolored faces
- black faces of degree (m+1)
- white faces of degree k(m+1), for some k>0.

m+1=3

[Lando & Zvonkine]
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[MBM & Schaeffer 00]
The number of planar (m+1)-constellations with n black faces is:

Planar constellations

Constellation: a rooted planar map with bicolored faces
- black faces of degree (m+1)
- white faces of degree k(m+1), for some k>0.

Bijection with 
greedy intervals?

m+1=3

[Lando & Zvonkine]
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III. A proof for greedy 
intervals (m=1)



Some observations
Ordinary order and concatenation: if w1 and w2 are Dyck paths, 
and w=w1 . w2, then v ≼ w iff v=v1 . v2 with v1 ≼ w1 and v2 ≼ w2.

[v,w] = [v1, w1 ] . [v2, w2]

v ≼ w w2w1
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This is no longer true for greedy intervals:

is NOT a greedy interval.

Some observations
Ordinary order and concatenation: if w1 and w2 are Dyck paths, 
and w=w1 . w2, then v ≼ w iff v=v1 . v2 with v1 ≼ w1 and v2 ≼ w2.

[v,w] = [v1, w1 ] . [v2, w2]

We took a different approach…
(which also works for ordinary intervals)

v ≼ w w2w1
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A new product for the greedy order
The star product
For v1 and v2 non-empty, let v = v1 * v2 be obtained by replacing the 
last peak of v1  by v2.

Lemma 
If v = v1 * v2, then v ≼ w iff w = w1 * w2 with v1 ≼ w1 and v2 ≼ w2. 

v1
v2

v1 * v2
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Recursive description of greedy intervals (m=1) 

Let ℐ be the set of greedy intervals [v,w] of size >0. 

● Case 1: v is primitive (no contact apart from the endpoints)

ℐ1 ≈ {[10,10]} ⊕ ℐ 
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Recursive description of greedy intervals (m=1) 

Let ℐ be the set of greedy intervals [v,w] of size >0. 

● Case 2: v is not primitive. Then v = v1 * v2, with v1 = 1v’0.10.
Thus w = w1 * w2  with v1 ≼ w1 and v2 ≼ w2. 

[v2, w2][v,w]

= *

[v1, w1]

≈ℐ 

v2
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Recursive description of greedy intervals (m=1) 

Let ℐ be the set of greedy intervals [v,w] of size >0. 

● Case 2: v is not primitive. Then v = v1 * v2, with v1 = 1v’0.10.
Thus w = w1 * w2  with v1 ≼ w1 and v2 ≼ w2. 

[v2, w2][v,w]

= *

[v1, w1]

The interval [v1, w1]:

+ + ... +

≈ℐ 

≈ℐ1 

v2
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Recursive description of greedy intervals (m=1) 

Let ℐ be the set of greedy intervals [v,w] of size >0. 
Let J(x)=J(t;x) be the GF that counts them by size (t) and length 
of the final descent of the upper path (x). 

21 / 
30



Recursive description of greedy intervals (m=1) 

Let ℐ be the set of greedy intervals [v,w] of size >0. 
Let J(x)=J(t;x) be the GF that counts them by size (t) and length 
of the final descent of the upper path (x). 
● Case 1: v is primitive (no contact apart from the endpoints):

≈ℐ 

21 / 
30



= *

Recursive description of greedy intervals (m=1) 

Let ℐ be the set of greedy intervals [v,w] of size >0. 
Let J(x)=J(t;x) be the GF that counts them by size (t) and length 
of the final descent of the upper path (x). 
● Case 1: v is primitive (no contact apart from the endpoints):

● Case 2: v is not primitive:
≈ℐ 

21 / 
30



+ + ... +

= *

Recursive description of greedy intervals (m=1) 

Let ℐ be the set of greedy intervals [v,w] of size >0. 
Let J(x)=J(t;x) be the GF that counts them by size (t) and length 
of the final descent of the upper path (x). 
● Case 1: v is primitive (no contact apart from the endpoints):

● Case 2: v is not primitive:
≈ℐ 

≈ℐ1 

21 / 
30



+ + ... +

= *

Recursive description of greedy intervals (m=1) 

Let ℐ be the set of greedy intervals [v,w] of size >0. 
Let J(x)=J(t;x) be the GF that counts them by size (t) and length 
of the final descent of the upper path (x). 
● Case 1: v is primitive (no contact apart from the endpoints):

● Case 2: v is not primitive:
≈ℐ 

≈ℐ1 

21 / 
30



Recursive description of greedy intervals (m=1) 

Let ℐ be the set of greedy intervals [v,w] of size >0. 
Let J(x)=J(t;x) be the GF that counts them by size (t) and length 
of the final descent of the upper path (x). 
● Case 1: v is primitive (no contact apart from the endpoints):

● Case 2: v is not primitive:

A discrete differential equation:

21 / 
30



Recursive description of greedy intervals (m=1) 

Let ℐ be the set of greedy intervals [v,w] of size >0. 
Let J(x)=J(t;x) be the GF that counts them by size (t) and length 
of the final descent of the upper path (x). 
● Case 1: v is primitive (no contact apart from the endpoints):

● Case 2: v is not primitive:

A discrete differential equation:

→ Solution via the quadratic method [Brown 65]
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IV. When m is general:
sketch of the proof 



1/ A discrete differential equation

Let ℐ be the set of greedy intervals [v,w] of size >0. 
● Instead of 2 cases, we have (m+1) families ℐ1, …, ℐm+1 = ℐ, that 

depend on the form of the lower path v.
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1/ A discrete differential equation
● The equation:

with

● Higher and higher derivatives of J(x) occur, since, e.g

The equation for J(x) involves the m series J(1), J’(1), …, dm-1J(1).

● The solution of such equations is always algebraic.
A general procedure solves the equation for small values of m 
and yields polynomial equations for these m series.                        

[MBM &Jehanne 06, Bostan, Notarantonio & Safey El Din 23(a)]
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1/ A discrete differential equation
● The equation:

with

● Higher and higher derivatives of J(x) occur, since, e.g

The equation for J(x) involves the m series J(1), J’(1), …, dm-1J(1).

● The solution of such equations is always algebraic.
A general procedure solves the equation for small values of m 
and yields polynomial equations for these m series.                        

[MBM &Jehanne 06, Bostan, Notarantonio & Safey El Din 23(a)]

Guess& check
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2/ Guessing a parametrization of the solution
● From small values of m, one guesses
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2/ Guessing a parametrization of the solution
● From small values of m, one guesses

● An equivalent formulation: if we write                                     then J(1) 
becomes a series in z instead of t, which is rational:

or equivalently, after introducing Z=Z(t) such that
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2/ Guessing a parametrization of the solution

● From small values of m, it seems that the dependency in x can also 
be parametrized rationally with

(while                                     as before).
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2/ Guessing a parametrization of the solution

● From small values of m, it seems that the dependency in x can also 
be parametrized rationally with

Indeed, with this change of variables, one conjectures:

(while                                     as before).
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3/ Checking that the guessed solution is correct
● The equation

● The guessed solution, in parametric form:

27 / 
30



3/ Checking that the guessed solution is correct
● The equation

● The guessed solution, in parametric form:

● The operator                       defined by

27 / 
30



3/ Checking that the guessed solution is correct
● The equation

● The guessed solution, in parametric form:

● The operator                       defined by

becomes                     , where

27 / 
30



3/ Checking that the guessed solution is correct
● The equation

● The guessed solution, in parametric form:

● One has to check a polynomial identity:

● The operator                       defined by

becomes                     , where

27 / 
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V. What else?



Final remarks and questions

• This approach can also be used for ordinary m-Tamari intervals
(new proof of the 2014 result)
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● Greedy 𝜈-Tamari order [Dermenjian 22(a)]: total number of 
intervals for 𝜈 of size n? 
cf. [Fang & Prévil le-Ratelle 17] 

● Greedy 1-Tamari intervals form a subset of ordinary 1-Tamari 
intervals: which triangulations do they correspond to?
cf. [Bernardi & Bonichon 07]
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Thanks for your 
attention
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