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It [the Bateman–Horn conjecture] implies many known

results, such as the prime number theorem and the Green–

Tao theorem, along with many famous conjectures, such

as the twin prime conjecture and Landau’s conjecture.

[. . . ]

We hope to convince the reader that the Bateman–Horn

conjecture deserves to be ranked among the Riemann

hypothesis and abc-conjecture as one of the most impor-

tant unproven conjectures in number theory.

From the paper “The Bateman–Horn

conjecture: Heuristic, history, and ap-

plications”, by S. L. Aletheia-Zomlefer,

L. Fukshansky and S. R. Garcia, 2020.
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The conjecture belongs to the domain of Number theory.

Neither Jones nor I had ever heard of it before 2020. Our way

to this conjecture went through the classification of permutation

groups of prime degree.

Just in case, if there are young students in the audience:

degree — the number of points on which the group acts;

order — the number of elements in the group.

Symmetric group Sn:

degree = n,

order = n!.

Our interest is in the degree.
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The groups of prime degree are few. . .

degree 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#(groups) 1 2 5 5 16 7 50 34 45 8 301 9 63 104

degree 16 17 18 19 20 21 22 23 24 25
#(groups) 1954 10 983 8 1117 164 59 7 25 000 211

degree 26 27 28 29 30 31 32 33 34 35
#(groups) 96 2392 1854 8 5712 12 2 801 324 162 115 407

degree 36 37 38 39 40 41 42 43 44
#(groups) 121 279 11 76 306 315 842 10 9491 10 2113

degree 45 46 47 48
#(groups) 10 923 56 6 195 826 352

The last result, for the degree 48, is dated 2020. Its author, Derek Holt, carried
out the computation for two years.
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It is tempting to classify the groups of prime degree.

This work was started by Lagrange (1770) in terms of polynomials,

continued by Galois (1830), then by Burnside (1906) and many

others . . .

Finally, today, two and a half centuries after Lagrange and after

the proof of the Mega-theorem of classification of the finite simple

groups, the work may be considered as almost finished.

Why “almost”? — In fact, there still exists a fundamental question

with an unknown answer. We will discuss it in a few minutes.

Remark. When I say that something is unknown I usually mean

that there is, as yet, no proof. More often than not the true an-

swer is “obvious” due to some indirect arguments and experimental

results.

So. . .
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The classification of permutation groups of prime degree goes as

follows.

Case 1: Symmetric groups Sp and alternating groups Ap

for p prime.

Nothing to add.
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Let AGL1(p) be the one-dimensional affine group over Zp:

AGL1(p) = {t 7→ at+ b | a, b ∈ Zp, a 6= 0} = Cp ⋊ Cp−1.

Then

Case 2: The groups G such that Cp ≤ G ≤ AGL1(p):

G = Cp ⋊Cd

where d is a divisor of p− 1, so that Cd ≤ Cp−1.

Galois proved that these are the only solvable groups of prime

degree.
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Sporadic cases

The projective groups PSL2(p) act naturally on p+1 points of the

projective line Zp ∪ {∞}.

But there are three of them (also known to Galois) which can also

act on p points:

Case 3a: The groups PSL2(5), PSL2(7) and PSL2(11) acting on

5, 7 and 11 points, respectively.

Beside these three groups, there are two more groups:

Case 3b: Mathieu groups M11 and M23 acting of 11 and 23 points,

respectively.
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The most interesting (and difficult) case

Case 4: Let p be a prime, and q = pe be a prime power, e ≥ 1.

Let Fq be the finite field with q elements. Let n ≥ 2. Then the

projective groups G such that

PSLn(q) ≤ G ≤ PΓLn(q)

act on

m =
qn − 1

q − 1
= 1+ q + q2 + · · ·+ qn−1

points of the projective space of dimension n− 1.

If it so happens that m is prime then the degree of G is prime.

We call such numbers m projective primes.
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Of course, for a given prime m it is easy to verify if it can be

represented as

m = 1+ q + q2 + · · ·+ qn−1

with q = pe a prime power. Still, there is a largely open and quite

fundamental question:

Open question: Are there infinitely many projective primes?

Equivalently, are there infinitely many projective groups of prime

degree?
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The same question may be formulated as follows. Let f ∈ Z[t] be

the following polynomial:

f(t) = 1+ te + · · ·+ t(n−1)e.

Do there exist infinitely many t ∈ N such that both t and f(t) are

prime?

In this way we arrive at the question of

prime values of polynomials .

If you ask group theorists they will say that the classification of

the groups of prime degree is already accomplished. This means

that they have done their part of work. What remains is a job of

Number Theory.
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A few examples

1. Fermat primes: q = 22
k

(k = 0,1,2,3,4), n = 2

21 +1 = 3, 22 +1 = 5, 24 +1 = 17, 28 + 1 = 257, 216 +1 = 65537.

Conjecture: There are no more Fermat primes.

2. Mersenne primes: q = 2, various n (51 examples are known)

22−1 = 3, 23−1 = 7, 25−1 = 31, 27−1 = 127, 213−1 = 8191, . . .

282589933 − 1 (24 862048 digits).

Conjecture: There are infinitely many Mersenne primes.

3. One more example: q = 259, n = 59

1+ 259 +2118 + · · ·+259·58 = a prime with 1031 digits.
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Primality verification

In order to carry out experiments we need to undertake a primality

verification on a large scale. What is the “practical complexity” of

this task?

December 2009: a 232-digit number was successfully factored into

a product of two 116-digit numbers. This result was the outcome

of two years of work by a team of 13 researchers, and was crowned

with a $50 000 prize. The computation “time” is 4400 GHz-years.

February 2020, the current record: a 250-digit number is factored.

A 260-digit number is a current challenge: it still waits for its turn

to be factored.

However, the verification of the fact that this 260-digit number is

composite takes < 0.0005 seconds on my laptop.

(I don’t know the exact time: Maple gives the CPU time within

the accuracy 0.001 seconds, and it outputs 0.)

The hero is the Rabin–Miller algorithm.
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One more example: the Goormaghtigh conjecture (1917):

the Diophantine equation

xn − 1

x− 1
=

yk − 1

y − 1
, n, k ≥ 3, n 6= k

has only two solutions:

1 + 2+ 4+ 8+ 16 = 1+ 5+ 25 = 31

and

1 + 2+ 4+ · · ·+212 = 1+ 90+ 902 = 8191.

Thus, 8191 is a projective prime for (q, n) = (2,13); but 90 is not

a prime power.

Hence, if the conjecture is true then there is only one “doubly

projective” prime, namely, 31 . There are two different projective

groups acting on 31 points: PSL3(5) and PSL5(2), and there are

no other such examples. Verified by Bétréma up to 1018.

I have mixed feelings concerning this conjecture: for about 20 years

I thought that it was my conjecture.
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Well. . . All the above was a starting point of our interest in prime

values of polynomials. Here is a pioneering and really important

but largely unknown conjecture.

Let f(t) ∈ Z[t] be a polynomial with integer coefficients. We would

like it to have infinitely many prime values. There are three obvious

necessary conditions:

1. The leading coefficient of f is positive.

2. f is irreducible over Z.

3. The values of f do not have a common divisor > 1. (Another

formulation: f(t) is not identically zero modulo any prime.)

Examples that do not satisfy the 3rd condition:

• All the values of f(t) = t2 + t+2 = t(t+1)+ 2 are even.

• All the values of f(t) = t9 − t3 +2520 are divisible by 504.
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Bunyakovsky conjecture (1857): The above three conditions

are also sufficient. A polynomial satisfying conditions 1, 2, 3 takes

prime values infinitely often.

The conjecture remains largely open. Even for f(t) = t2+ t+1 or

f(t) = t2 +1 there is no proof in view.

Besides, there are 745582 values of t ≤ 107 such that t2 + t+1 is

prime, and 456362 values such that t2 +1 is prime.

However, the polynomial t12 + 488669 has only three prime val-

ues for t ≤ 106, the least one being for t = 616980. Fortunately,

Bunyakovsky did not know this example.
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Bunyakovsky was a student of Cauchy.

In Russia, he is known for the Cauchy–Bunyakovsky inequality

which, in the Western tradition, is called after Cauchy–Schwarz.

Schwarz proved this inequality in 1888, Bunyakovsky in 1859, thus

29 years earlier.

18



The only case of the Bunyakovsky conjecture which is proved is

for polynomials of degree 1:

Theorem (Dirichlet, 1837): Let a, b ∈ N be coprime. Then the

arithmetic progression at+ b, t ∈ N contains infinitely many primes.

Example: There are infinitely many primes which terminate by

777 . . .7 (17 times).

Proof: Take a = 1017, b = 777 . . .7.
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There followed a series of generalizations and special cases of the

Bunyakovsky conjecture:

• Dickson’s conjecture (1904)

• The Euler–Landau conjecture (1752, 1912)

• The Sophie Germain conjecture

• Hardy and Littlewood (1923)

• Schinzel’s hypothesis H (1960)

• · · ·

• Bateman and Horn (1962)

• Weixiong Li (2019): improved version of the Bateman–Horn

In what follows we will always use the version of the conjecture

given by Li.
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Viktor Yakovlevich Bunyakovsky (1804–1889)
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Left: Leonard Eugene Dickson (1874–1954).

Right: Andrzej Schinzel (born 1937) in Bordeaux at the conference

in honour of Michel Mendès France (September 2000).
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Left: Godfrey Harold Hardy (1877–1947)

Center: John Edensor Littlewood (1885–1977)
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Paul T. Bateman (1919–2012) and Roger A. Horn (born 1942)

Bateman at the time (1962) was a renowned specialist in num-

ber theory, and Horn was an undergraduate student who was able

to write programs for the ILLIAC computer. Later he became a

specialist in matrix analysis.

Notice that there was no Maple at their disposal and no other

mathematical packages: everything had to be programmed from

scratch.
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The Bateman–Horn conjecture (1962)

Let f1, f2, . . . , fk ∈ Z[t] be polynomials with integer coefficients

which satisfy the following conditions (similar to Bunyakovsky):

1. All fi are indecomposable over Z (and hence coprime).

2. The leading coefficients of all of them are positive.

3. The product f = f1f2 . . . fk is not identically zero modulo any

prime.

Let Q(x) be the number of t ≤ x such that fi(t) are ALL prime.

Then Q(x) is asymptotically equivalent to the following expression

(see the next pages). . .
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Recall that f(t) is the product f = f1f2 . . . fk, and Q(x) is the

number of t ≤ x such that all fi(t) are prime. Then

Q(x) ∼ C(f)
x
∫

a

dt
k
∏

i=1
ln(fi(t))

Here C(f) is a constant factor to which I will return in a minute,

and the lower limit of the integration, denoted here by a, should

be adapted in such a way as to avoid the logarithmic singularities

at fi(t) = 1. Quite often one takes a = 2.

From the computational point of view to compute the integral is

a matter of seconds while the computation of the constant C(f)

is a huge task and the subject of several publications.
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C(f) =
∏

p

(

1−
1

p

)−k (

1−
ωf(p)

p

)

where the product is taken over all primes p, and ωf(p) is the

number of solutions of f(t) = 0 mod p.

Thus, C(f) is an infinite product. Its computation may present

serious difficulties. In particular, it may be difficult to find ωf(p).

A bit of interpretation:

1.

(

1−
1

p

)k

is the “probability” that a “randomly chosen” k-tuple

of integers contains no integer divisible by p.

2. 1−
ωf(p)

p
is the probability that f(t) is not divisible by p. Since

the function f is the product of fi, this is the probability that

no one of fi(t) is divisible by p.
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Lemma: The above product converges to a constant C > 0. (The

convergence is not absolute!)

A detailed proof is published only in 2020 and takes seven pages.

In the original paper by Bateman and Horn there are only a few

hints.

Since the integral

x
∫

2

dt

ln(t)k
diverges for every k ≥ 1 when x → ∞ we

have the following corollary:

Corollary (Schinzel’s hypothesis): The polynomials f1, . . . , fk
take prime values simultaneously infinitely many times.
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The remaining part of the talk will mainly consist of

Examples

29



Example 1. Let us consider the simplest possible example: k = 1,

so we have only one polynomial, and this polynomial is f(t) = t.

Then

Q(x) = #(t ≤ x) such that t is prime.

The equation t = 0 always has a unique solution modulo any p.

Therefore

C(f) =
∏

p

(

1−
1

p

)−1(

1−
1

p

)

= 1.

Conclusion: Q(x) ∼
∫ x

2

dt

ln(t)
∼

x

ln(x)
.

We recognize the Prime Number Theorem by Hadamard and de la

Vallée Poussin (1896).

The estimations
∫ x

2

dt

ln(t)
and

x

ln(x)
are asymptotically equivalent

BUT. . .
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The exact number of primes has been computed up to x = 1028:

π(1028) = 157589269275973410412739598.

The estimate by Hadamard and de la Vallée Poussin gives

1028

28 · ln 10
= 155105172108304224161117471.042

with the relative error −1.576%.

The Bateman–Horn estimate gives

1028
∫

2

dt

ln t
= 157589269275974838158399970.696

with the relative error 0.000000000000906% ≈ 10−12%.

The estimation using the integral was of course known both to

Hadamard and de la Vallée Poussin and also to Dirichlet, but the

first to conjecture it was Gauss.
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My distinguished friend:

Your remarks concerning the frequency of primes were of interest

to me in more ways than one. You have reminded me of my own

endeavors in this field which I began in the very distant past, in

1792 or 1793, after I had acquired the Lambert supplements to

the logarithmic tables. Even before I had begun my more detailed

investigations into higher arithmetic, one of my first projects was

to turn my attention to the decreasing frequency of primes, to

which end I counted the primes in several chiliads and recorded the

results on the attached white pages. I soon recognized that behind

all of its fluctuations, this frequency is on the average inversely

proportional to the logarithm, so that the number of primes below

a given bound n is approximately equal to
∫

dn

logn
,

where the logarithm is understood to be hyperbolic.

(From a letter of Gauss to his former student,

the astronomer Johann Franz Encke, 1849.)
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Twin primes

Let us take f1 = t and f2 = t + 2. We want them to be simulta-

neously prime.

The equation t(t + 2) = 0 mod p has one solution for p = 2 and

two solutions for all other primes p. Thus we have

C(f) =
∏

p

(

1−
1

p

)−2(

1−
ωf(p)

p

)

= 2
∏

p≥3

(

1−
1

p

)−2(

1−
2

p

)

.
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This time, the constant is known with a high precision:

C(f) = 1.32032363169373914786 . . .

The number of pairs of twin primes is known up to 1018: it is

808675888577436, while

C(f) ·

1018
∫

2

dt

ln(t)2
= 808675901493606.3.

The relative error is 0.0000016%.
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To me, this is a kind of a paradox:

• The infinitude of the twin primes is a conjecture, widely open.

• In spite of that, we can predict their number, up to a given

limit, with an incredibly high precision.

One may also invent his or her exercises. For example:

How many neighboring twin pairs are there, like (5,7) and

(11,13), or (9431, 9433) and (9437,9439). It suffices to

take four polynomials: t, t+2, t+6, t+8.
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As we can easily imagine, there are many applications of the

Bateman–Horn conjecture to Number Theory. Their incomplete

list looks as follows:

• The Sophie Germain primes: primes p such that 2p+1 is also

prime;

• The Cunningham chains: sequences of primes p1, p2, . . . , pk such

that pi+1 = 2pi +1 (the longest know chain is of length 17);

• The Euler–Landau conjecture: primes of the form t2 +1;

• The Dirichlet theorem and its refinement (numbers of primes

in arithmetic progressions);

• The Green–Tao theorem (2004): for any k ∈ N, prime numbers

contain infinitely many arithmetic progressions of length k;

• and certainly many others.

36



An application to block designs

A 2-block design with parameters v, k, λ is a set V of size v of

elements called points and a collection B of subsets of V , each of

size k, called blocks, such that each pair of points lies in exactly

λ blocks.

The 2 at the name "2-block design" corresponds to the pairs of

points: in more general case one considers l-element subsets.

Example: Projective plane of the field Fq: v = 1+ q + q2, blocks

are lines, k = 1+ q, and each pair of points lies on exactly one line

(thus, λ = 1).

There also exist many other constructions.
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An construction from a paper by Amara, Devillers and Praeger:

block designs with large automorphism groups (some upper bounds

are attained).

For their construction, they need the following: let fn,r be the

polynomial

fn,r(t) = 8n2t2 +2n(2r − 1)t+

(

r(r − 1)

2
− n

)

with

r < 4n and
r(r − 1)

2
≡ n+1 mod (2n).

The construction needs fn,r(t) to be a prime power. The Bateman

and Horn conjecture permits to treat the case of prime values.

Let us consider an example: f2,3(t) = 32t2 +20t+1.
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The polynomial is of degree 2: there are no theorems which would

imply whatsoever. The Bunyakovsky conjecture implies that there

are infinitely many prime values. What do Bateman and Horn say?

In order to compute the constant C(f) in front of the integral,

we need to know ωf(p) which is the number of solutions of the

equation f(t) = 0 mod (p).

• p = 2: 32t2 +20t+1 = 0 ⇔ 1 = 0: no solutions.

• p 6= 2: multiply f(t) by 8:

256t2 +80t+8 = 256t2 +80t+25− 17 = (16t+5)2 − 17,

so finally we have

(16t+5)2 = 17 mod (p).

• p = 17: unique solution: 16t+5 = 0, hence t = 5.
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• p 6= 2,17: the equality (16t+5)2 = 17 mod p means that

17 is a quadratic residue modulo p.

To verify, for each p, if 17 is a quadratic residue, is a dull and

time-consuming occupation.

The magic wand: The Gauss law of quadratic reciprocity!

Quadratic residues

We consider remainders modulo some number. Quadratic residues

are those which are squares (except zero).

Modulo a composite number they do not have much interest. For

example, 12 = 52 = 72 = 112 = 1 mod (12).

Modulo a prime p there are exactly (p − 1)/2 quadratic residues

and the same number of quadratic non-residues. To find out if a

given y ∈ Zp is a quadratic residue or not is a difficult question.
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Notation: the Legendre symbol:

(

m

p

)

=











0 if m ≡ 0 mod p,
1 if m is a quadratic residue mod p,
−1 otherwise.

The Legendre symbol is multiplicative:
(

mn

p

)

=

(

m

p

)

·

(

n

p

)

.

Also, the following equalities are often useful:
(

2

p

)

= 1 or − 1 as p ≡ ±1 or ± 3 mod (8)

and
(

−1

p

)

= 1 or − 1 as p ≡ 1 or − 1 mod (4).
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The Quadratic Reciprocity Law

Theorem: Let p, q 6= 2 be two primes. Then

(

p

q

)

=

(

q

p

)

if one or both p, q ≡ 1 mod (4),
(

p

q

)

= −

(

q

p

)

if both p, q ≡ −1 mod (4).

Gauss was so impressed by this property that he published six (!)

different proofs of this result, and two more proofs were found in

his papers after his death.

In our case, 17 ≡ 1 mod (4). Therefore, instead of verifying if 17

is a quadratic residue modulo p, we may verify if p is a quadratic

residue modulo 17.

Quadratic residues modulo 17 are: 1,2,4,8,9,13,15,16, or, if you

prefer, ±1,±2,±4,±8.
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To conclude: for f(t) = 32t2 +20t+1 we have the number ωf(p)

of solutions of f(t) = 0 in Zp equal to the following:

ωf(p) =



















0 p = 2,
1 p = 17,
2 p ≡ 1,2,4,8,9,13,15,16 mod (17), p 6= 2,
0 otherwise.

Computing the product below over p ≤ 108 we get

C(f) =
∏

p

(

1−
1

p

)−1(

1−
ωf(p)

p

)

= 4.721240276.

Finally, the estimation of the number of prime values of f(t) for

t ≤ x is

E(x) = C(f)

x
∫

2

dt

ln(f(t))
.
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The results are summarized in the table below:

segment #(prime f(t)) E(x) relative error

t ≤ 103 326 314.49 −3.53%

t ≤ 104 2421 2404.86 −0.67%

t ≤ 105 19 394 19438.26 0.23%

t ≤ 106 162 877 163182.75 0.19%

t ≤ 107 1 405 448 1406630.14 0.084%

t ≤ 108 12 357 532 12362961.06 0.044%

Beautiful !

At the same time, the above considerations demonstrate that the

computation of the constant factor C(f) may be an intricate mat-

ter. It depends on the nature of f .

For example: what to do with cubic polynomials?

(There exists a "cubic reciprocity law" but it is much more difficult

to apply. And a cubic equation cannot, in general, be reduced to

the form (at+ b)3 = c.)
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Back to groups and “projective primes”

Reminder: a projective prime is a prime m of the form

m = 1+ q + q2 + · · ·+ qn−1

where q is a prime power: q = pe, e ≥ 1. The exponent n must

itself be prime, otherwise the polynomial 1 + t + · · · + tn−1 would

be reducible, like 1+ t+ t2 + t3 + t4 + t5 = (1+ t)(1 + t2 + t4).

Jean Bétréma, using the program Julia, computed all projective

primes m ≤ 1018. There are 1 974 311 of them.

Among them, there are:

• 1 974 010 numbers of the form 1+ p+ p2 with p prime, and

• 301 projective primes of other types.

Taking f1 = t and f2 = 1+ t+ t2 and computing the integral over

t ≤ 109 we get the Bateman–Horn estimate for the first number:

1 973 868. The relative error is 0.0072%.
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Why there are so few projective primes of other types?

Let us take, for example, m = 1 + p + p2 + p3 + p4, p prime. In

order to have m ≤ 1018 we must take the integral over t ≤ 1018/4

instead of t ≤ 1018/2 as in the previous case.

The number of primes of this form is 252, the estimate gives

246.72.

Another example: the number of primes m ≤ 1018 of the form

m = 1+p3+p6 is 10; the integral is taken over [2,1018/6] = [2,103];

the “asymptotic estimate” of this number is 12.06.

There is a single projective prime m ≤ 1018 for p prime and n = 31:

it is 1+2+22+· · ·+230. We look for p ≤ 1018/30 = 3.98; thus, the

only other candidate is 1+ 3+32 + · · ·+330, but it is composite.

We did not try to get an asymptotic estimate of the number 1.
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The constant factor

In order to compute the constant factor we need the following

lemma.

Lemma. Let f = t(1 + t+ · · ·+ tn−1), and consider the equation

f(t) = 0 mod p.

Then:

ωf(p) =



















2, p = n (namely, t = 0 and t = 1),
n, p ≡ 1 mod n (namely, t = 0 and n− 1 primitive

roots of unity of degree n modulo p),
1, otherwise (there is always the root t = 0).

For example, take n = 7, so that

f = t(1 + t+ t2 + t3 + t4 + t5 + t6),

and let p = 43 ≡ 1 mod 7. Then we have seven roots of f in Z43:

0; 4, 42 = 16, 43 = 21, 44 = 41, 45 = 35, 46 = 11 (47 = 1).
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Conclusion

At the beginning of the talk, I cited a review paper by Aletheia-
Zomlefer, Fukshansky and Garcia on the Bateman–Horn conjec-
ture. The first version of this paper was called

One conjecture to rule them all: Bateman–Horn

(An allusion to Tolkien: “One Ring to rule them all”.)

And, indeed, we may continue indefinitely, inventing new and new
conjectures ad infinitum.

Just two examples:

Our conjecture about projective primes (that there
are infinitely many of them) does not figure in any
known list of corollaries of the BH-conjecture. The
same for polynomials coming from block designs.

Another remarkable feature of this conjecture is an incredible
accuracy with which it predicts the number of “solutions”, i. e.,
of prime values of polynomials, in all kinds of problems which fall
into its framework.
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Other topics to which the Bateman–Horn conjecture applies:

– Linear groups

– Orders of elements in groups

– Difference sets

– Elliptic curves

– Cryptography

– Error-correcting codes

– Fast multiplication

– Ramanujan graphs

Every problem in which there is a polynomial, or there are several

polynomials, which must take prime values, is a potential area of

applications of this conjecture.
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L’arithmétique

Tapestry (around 1520) – Musée Cluny, Paris

The Latin inscription at the bottom:
Monstrat ars numeris que virtus possit habere

Explico pernumeru(m) que sit proportio rerum

The art of the number shows what virtue it may have:

I explain by the number which is the proportion of things
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Thank you!

51


