Young tableaux with periodic walls: counting with the density method

Cyril Banderier (CNRS/Univ. Paris-Nord)

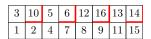
and

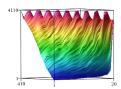
Michael Wallner

(TU Wien)

Austrian Science Fund (FWF): J 4162 and P 34142

GT Combinatorics and Interactions, LaBRI November 8th, 2021





Uniform random generation of combinatorial structures

Many approaches:

- ad hoc methods (& general principles: bijections, rejection, (un)ranking, etc.)
- Markov chain Monte Carlo algorithms, e.g. coupling from the past [Propp Wilson 1998]
- generating trees [West 1990, Dulucq Gire Guibert 1996, Barcucci Del Lungo Pergola Pinzani 1998,
- Boltzmann method [Duchon Flajolet Louchard Schaeffer 2002, Fusy Pivoteau Salvy Soria Bodini Ponty Dovgal Bendkowsky
 Dien Papin Bacher Sportiello Stufler...]: the cherry on the cake of the symbolic method!

Banderier Bousquet-Mélou Denise Flajolet Gardy Gouyou-Beauchamps 1998...]

density method → this talk!

Part I:

Enumerative and bijective results

7	18	19	12	21	20	17
2	6	8	9	10	14	16
1	3	4	5	11	13	15

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

7	18	19	12	21	20	17
2	6	8	9	10	14	16
1	3	4	5	11	13	15

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

13	14
9	12
8	11
7	10
4	6
2	5
1	3

Nice formulas for some specific tableaux of shape $n \times 2$:

• no walls:

7	18	19	12	21	20	17
2	6	8	9	10	14	16
1	3	4	5	11	13	15

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

13	14
9	12
8	11
7	10
4	6
2	5
1	3

Nice formulas for some specific tableaux of shape $n \times 2$:

• no walls: $\frac{1}{n+1} \binom{2n}{n}$

7	18	19	12	21	20	17
2	6	8	9	10	14	16
1	3	4	5	11	13	15

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

14	12
10	13
3	11
8	7
4	6
2	5
Q	1

- no walls: $\frac{1}{n+1} \binom{2n}{n}$
- walls everywhere:

7	18	19	12	21	20	17
2	6	8	9	10	14	16
1	3	4	5	11	13	15

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

14	12
10	13
3	11
8	7
4	6
2	5
9	1

- no walls: $\frac{1}{n+1} \binom{2n}{n}$
- walls everywhere: (2n)!

7	18	19	12	21	20	17
2	6	8	9	10	14	16
1	3	4	5	11	13	15

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

- no walls: $\frac{1}{n+1} \binom{2n}{n}$
- walls everywhere: (2n)!
- horizontal walls everywhere:

7	18	19	12	21	20	17
2	6	8	9	10	14	16
1	3	4	5	11	13	15

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

- no walls: $\frac{1}{n+1} \binom{2n}{n}$
- walls everywhere: (2n)!
- horizontal walls everywhere: $\frac{(2n)!}{2^n}$

7	18	19	12	21	20	17
2	6	8	9	10	14	16
1	3	4	5	11	13	15

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

12	13
10	14
9	11
7	8
4	6
2	3
1	5

- no walls: $\frac{1}{n+1} \binom{2n}{n}$
- walls everywhere: (2n)!
- horizontal walls everywhere: $\frac{(2n)!}{2^n}$
- horizontal walls everywhere in 2nd col.:

7	18	19	12	21	20	17
2	6	8	9	10	14	16
1	3	4	5	11	13	15

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

12	13
10	14
9	11
7	8
4	6
2	3
1	5

- no walls: $\frac{1}{n+1} \binom{2n}{n}$
- walls everywhere: (2n)!
- horizontal walls everywhere: $\frac{(2n)!}{2^n}$
- horizontal walls everywhere in 2^{nd} col.: $\frac{(2n)!}{2^n n!} = (2n-1)!!$

7	18	19	12	21	20	17
2	6	8	9	10	14	16
1	3	4	5	11	13	15

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

14	13
10	12
9	11
8	7
4	6
3	5
2	1

- no walls: $\frac{1}{n+1} \binom{2n}{n}$
- walls everywhere: (2n)!
- horizontal walls everywhere: $\frac{(2n)!}{2^n}$
- horizontal walls everywhere in 2^{nd} col.: $\frac{(2n)!}{2^n n!} = (2n-1)!!$
- vertical walls everywhere:

7	18	19	12	21	20	17
2	6	8	9	10	14	16
1	3	4	5	11	13	15

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

14	13
10	12
9	11
8	7
4	6
3	5
2	1

- no walls: $\frac{1}{n+1} \binom{2n}{n}$
- walls everywhere: (2n)!
- horizontal walls everywhere: $\frac{(2n)!}{2^n}$
- horizontal walls everywhere in 2^{nd} col.: $\frac{(2n)!}{2^n n!} = (2n-1)!!$
- vertical walls everywhere: $\binom{2n}{n} = \frac{(2n)!}{(n!)^2}$

7	18	19	12	21	20	17
2	6	8	9	10	14	16
1	3	4	5	11	13	15

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

14	13
10	12
9	11
8	7
4	6
3	5
2	1

- no walls: $\frac{1}{n+1} \binom{2n}{n}$
- walls everywhere: (2n)!
- horizontal walls everywhere: $\frac{(2n)!}{2^n}$
- horizontal walls everywhere in 2^{nd} col.: $\frac{(2n)!}{2^n n!} = (2n-1)!!$
- vertical walls everywhere: $\binom{2n}{n} = \frac{(2n)!}{(n!)^2}$
- all k vertical walls:

7	18	19	12	21	20	17
2	6	8	9	10	14	16
1	3	4	5	11	13	15

We consider Young tableaux in which some pairs of (horizontally or vertically) consecutive cells are allowed to have decreasing labels. Places where a decrease is allowed (but not compulsory) are drawn by a red edge, which we call a "wall".

14	13
10	12
9	11
8	7
4	6
3	5
2	1

- no walls: $\frac{1}{n+1}\binom{2n}{n}$
- walls everywhere: (2n)!
- horizontal walls everywhere: $\frac{(2n)!}{2n}$
- horizontal walls everywhere in 2^{nd} col.: $\frac{(2n)!}{2^n n!} = (2n-1)!!$
- vertical walls everywhere: $\binom{2n}{n} = \frac{(2n)!}{(n!)^2}$
- all k vertical walls: $\frac{1}{n+1}\binom{n+1}{k}\binom{2n}{n}$ (We give 2 proofs \bigcirc)

Proof #1: bijection with paths

Theorem

The number of $n \times 2$ Young tableaux \mathcal{Y} with k vertical walls is equal to

$$v_{n,k} = \frac{1}{n+1} \binom{n+1}{k} \binom{2n}{n}.$$

<u>Proof:</u> (part 1) Bijection with Dyck bridges on \mathbb{Z} : steps ± 1 , length 2n, k marked down steps:

Proof #1: bijection with paths

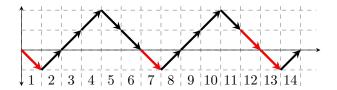
Theorem

The number of $n \times 2$ Young tableaux \mathcal{Y} with k vertical walls is equal to

$$v_{n,k} = \frac{1}{n+1} \binom{n+1}{k} \binom{2n}{n}.$$

<u>Proof:</u> (part 1) Bijection with Dyck bridges on \mathbb{Z} : steps ± 1 , length 2n, k marked down steps:

- The kth step is an up step iff the entry k appears in the first column of \mathcal{Y} ; otherwise it is a down step.
- If the kth down step is in a row with a wall we color it.



Proof #1: bijection with paths

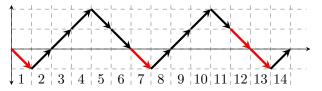
Theorem

The number of $n \times 2$ Young tableaux \mathcal{Y} with k vertical walls is equal to

$$v_{n,k} = \frac{1}{n+1} \binom{n+1}{k} \binom{2n}{n}.$$

<u>Proof:</u> (part 1) Bijection with Dyck bridges on \mathbb{Z} : steps ± 1 , length 2n, k marked down steps:

- The kth step is an up step iff the entry k appears in the first column of \mathcal{Y} ; otherwise it is a down step.
- If the kth down step is in a row with a wall we color it.
- $\Rightarrow v_{n,k}$ counts the number of paths with exactly k colored steps.



Proof #1: bijection with paths and Chung–Feller

Theorem

The number of $n \times 2$ Young tableaux \mathcal{Y} with k vertical walls is equal to

$$v_{n,k} = \frac{1}{n+1} \binom{n+1}{k} \binom{2n}{n}.$$

Proof (part 2):

- A down step below 0 is always colored because a wall has to be involved, a down step above 0 has a choice.
- By [Chung–Feller 49] the number of Dyck bridges of length 2n with i down steps below 0 is independent of i and equal to $Cat(n) = \frac{1}{n+1} \binom{2n}{n}$.

$$\Rightarrow \qquad v_{n,k} = \sum_{i=0}^{k} \binom{n-i}{k-i} \operatorname{Cat}(n) = \binom{n+1}{k} \operatorname{Cat}(n).$$

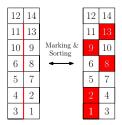
Theorem

$$v_n(u) := \sum_{k=0}^n v_{n,k} u^k = \mathsf{Cat}(n) \left((1+u)^{n+1} - u^{n+1} \right).$$

- 12 | 14
- 11 13
- 10 9
- 6 8
- 5 7
- 4 2
- 3

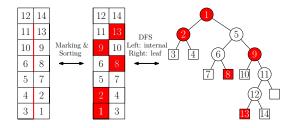
Theorem

$$v_n(u) := \sum_{k=0}^n v_{n,k} u^k = \mathsf{Cat}(n) \left((1+u)^{n+1} - u^{n+1} \right).$$



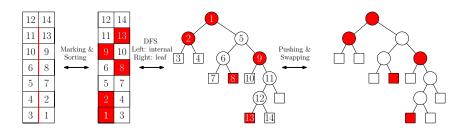
Theorem

$$v_n(u) := \sum_{k=0}^n v_{n,k} u^k = \mathsf{Cat}(n) \left((1+u)^{n+1} - u^{n+1} \right).$$



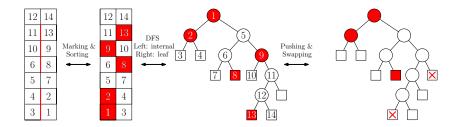
Theorem

$$v_n(u) := \sum_{k=0}^n v_{n,k} u^k = \mathsf{Cat}(n) \left((1+u)^{n+1} - u^{n+1} \right).$$



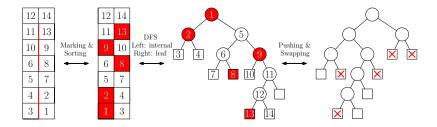
Theorem

$$v_n(u) := \sum_{k=0}^n v_{n,k} u^k = \mathsf{Cat}(n) \left((1+u)^{n+1} - u^{n+1} \right).$$



Theorem

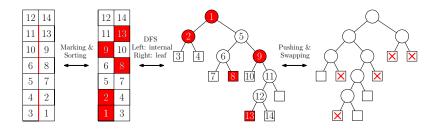
$$v_n(u) := \sum_{k=0}^n v_{n,k} u^k = \mathsf{Cat}(n) \left((1+u)^{n+1} - u^{n+1} \right).$$



Theorem

The GF for a fixed size n and an arbitrary number of walls is

$$v_n(u) := \sum_{k=0}^n v_{n,k} u^k = \mathsf{Cat}(n) \left((1+u)^{n+1} - u^{n+1} \right).$$



Open problem: combinatorial explanation of $Cat(k-1) \mid v_{n,k}$?

Closed form of $v_{n,k}$ also proves $\sum_{n>0} v_{n,k} z^n = \text{Cat}(k-1) \frac{z^{k-1}}{(1-4z)(2k-1)/2}$.

Long walls with small holes: hook-length type formulas

Holes of size 1 on the border

13	14	16	17	19	20	21	25	27
11	2	10	12	15	18	6	23	26
4	1	8	5	7	9	3	22	24
$\overrightarrow{\lambda_1}$	$\leftarrow \lambda$	${\longrightarrow}$		λ_3	\rightarrow		λ_4	\longrightarrow

Theorem

The number of $n \times m$ Young tableaux of size mn with k walls from column 1 to m-1 at distance $0 < d_i := \sum_{j=1}^i \lambda_i < n, \ i=1,\ldots,k$ with $h_i < h_{i+1}$ is equal to

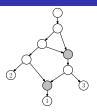
$$\frac{(m-1)!}{(mn+m-1)_{m-1}} \left(\prod_{i=1}^{k+1} \prod_{j=1}^{m-2} {\lambda_i + j \choose j}^{-1} \right) \left(\prod_{i=1}^{k+1} {md_i + m-1 \choose \lambda_i, \ldots, \lambda_i} \right),$$

where the multinomial coefficients contain m-1 λ_i 's.

Larger holes lead to unusual asymptotics

The "simplest case" of holes of size 2 on the border

6	10	14	15	17	18
3	5	9	12	13	16
2	1	7	4	11	8



BAADBACFCBEDECDFEF

$\mathsf{Theorem}$

The number f_n of such Young tableaux of size $n \times 3$ satisfies

$$f_n = \Theta\left(n! \ 12^n e^{a_1(3n)^{1/3}} n^{-2/3}\right),$$

where $a_1 \approx -2.338$ is the largest root of the Airy function of the first kind.

- Bijections to phylogenetic networks, special words with *n* distinct letters, and related to compacted trees (special DAGs) [Fuchs-Yu-Zhang 21]
- General method to prove stretched exponentials in bivariate recurrences [Elvey Price-Fang-Wallner 21]. Here:

$$y_{n,k} = y_{n,k-1} + (2n+k-1)y_{n-1,k}$$

and
$$f_n = y_{n,n}$$
.

Part II:

The density method

- * far origins in poset theory (volume of polytopes, log-concavity) [Stanley 1981]
- * avatars in number theory [Zagier, Beukers Kolk Calabi 1993, Elkies 2003]
- * applied to square Young tableaux [Barishnikov 2001] and variants of alternating permutations [Baryshnikov Romik 2010, Stanley 2010]
- * generalized to further posets & random generation [Banderier Marchal Wallner 2016–2021]

Values of the zeta function

$$\zeta(s) = \sum_{k \ge 1} \frac{1}{k^s} \rightarrow \zeta(s)(1 - \frac{1}{2^s}) = \sum_{k \ge 0} \frac{1}{(2k+1)^s}$$

$$S(2) = \sum_{k \ge 0} \frac{1}{(2k+1)^2} = \sum_{k \ge 0} \int_0^1 \int_0^1 (xy)^{2k} = \int_0^1 \int_0^1 \frac{dxdy}{1 - (xy)^2}$$

Change of variable $x = \frac{\sin u}{\cos v}$ and $y = \frac{\sin v}{\cos u}$.

The integration domain becomes the triangle $T = \{u > 0, v > 0, u + v < \pi/2\}$.

$$S(2) = \int_T dudv = \pi^2/8$$

n even: $S(n) = \text{vol}(\text{polytope of dimension } n) = (\pi/2)^n/n! A(n)$

A(n) = # alternating permutations of length n.

→ Kontsevich–Zagier periods / Hilbert 3rd problem

Uniform random generation and enumeration

6	15	16
1	13	14
8	10	18
3	9	12
4	7	17
2	5	11

This example is "without loss of generality" (i.e., our method works also for non-periodic shapes).

How to generate/enumerate such tableaux? Brute-force is hopeless!

Uniform random generation and enumeration

6	15	16
1	13	14
8	10	18
3	9	12
4	7	17
2	5	11

This example is "without loss of generality" (i.e., our method works also for non-periodic shapes).

How to generate/enumerate such tableaux? Brute-force is hopeless! Solution = use our density method!

The density method will give thousands of coefficients in a few seconds.

The number of tableaux of size $2n \times 3$ is $f_n = (6n + 1)! \int_0^1 p_n(z) dz$, with

$$p_{n+1}(z) = \int_0^z \frac{1}{24} (z-1)(x-z)(3x^3 - 7x^2z - xz^2 - z^3 - 2x^2 + 4xz + 4z^2) p_n(x) dx.$$

 $392833430654718548673344250,\ 115375222087417545717234273063750,$

 $55038140590519890608190921051205837500, \dots \}.$

From tableaux to tuples of real numbers, and polytopes

6	15	16
1	13	14
8	10	18
3	9	12
4	7	17
2	5	11

7	16	17
2	14	15
9	11	19
4	10	13
5	8	18
3	6	12
	1	

.96	.97
.94	.95
.91	.99
.90	.93
.82	.98
.57	.92
.06	
	.94 .91 .90 .82

S	Z	W
R	Y	V
	X	
S < V R <	٧	< W V

Left: $2n \times 3$ Young tableau with walls.

Centre: A related tableau with one more cell (removing this cell + relabel: bijection with left tableau).

Our algorithm generates real numbers between 0 and 1, with same relative order. All possible values = a polytope $\mathcal{P} \in [0,1]^{6n+1}$.

Right: The "building block" of 7 cells. Each polyomino is made of the overlapping of *n* such building blocks.

Density method: key ideas

geometric point of view:

Associate with a poset of size N its order polytope \mathcal{P} (it is a subset of $[0,1]^N$). Generate a random element of \mathcal{P} slice by slice using conditional densities. In the present example, N=6n+1 and the slices are the building blocks of size 6 (except for the first one).

• sequence of densities:

sequence of polynomials $p_n(x)$, defined by the following recurrence (which in fact encodes the full structure of the problem, building block after building block): $p_0 = 1$ and by induction,

$$p_{n+1}(z) = \int_{0 < x < z} \int_{x < y < z} \int_{0 < r < y} \int_{r < s < z} \int_{z < w < 1} \int_{y < v < w} p_n(v) \, dv \, dw \, ds \, dr \, dy \, dx.$$

S	Z	W
R	Y	V
	X	

S	<	Z	<	W
V		V		V
R	<	Y	<	V
		V		
		X		

The density method algorithm

- 1 Initialization: Precompute the polynomials $p_0(z), \ldots, p_n(z)$. Label the building blocks from k = n - 1 to k = 0 (top to bottom). Start at the top, i.e. k := n - 1.
 - Put into the top cell Z a random number z with density $p_n(z)/\int_0^1 p_n(t) dt$.
- 2 Filling: Now that Z is known, put into the cells X, Y, R, S, V, W random numbers x, y, r, s, v, w with conditional density

$$g_{k,z}(x,y,r,s,v,w) := \frac{1}{\rho_{k+1}(z)} \rho_k(x) \mathbf{1}_{P_k},$$

where $\mathbf{1}_{\mathcal{P}k}$ is the indicator function of the k-th building block (with value z in cell Z):

$$\mathbf{1}_{\mathcal{P}_k} := \mathbf{1}_{\{0 \leq x \leq y \leq z, 0 \leq r \leq y, r \leq s \leq z, z \leq w \leq 1, y \leq v \leq w\}}.$$

3 Iteration: Consider X as the Z of the next building block. Set k := k - 1 and go to step 2 (until k = 0).

A very efficient algorithm!

Theorem

The density method algorithm is a uniform random generation algorithm with quadratic time complexity (including precomputations).

Proof

Our algorithm yields a tuple $\mathbf{x} := (x_i, y_i, r_i, s_i, v_i, w_i)_{0 < i \le n}$ with density

$$\frac{p_{n}(x_{n})}{\int_{0}^{1} p_{n}(t) dt} \prod_{i=1}^{n} g_{n-i,x_{n-i+1}}(x_{n-i},y_{n-i},r_{n-i},s_{n-i},v_{n-i},w_{n-i})$$

$$= \frac{p_{n}(x_{n})}{\int_{0}^{1} p_{n}(t) dt} \prod_{k=0}^{n-1} \frac{p_{k}(x_{k}) \mathbf{1}_{\mathcal{P}_{x_{k}}}}{p_{k+1}(x_{k+1})} \stackrel{=}{\uparrow} \frac{p_{0}(x_{0}) \mathbf{1}_{\mathcal{P}}}{\int_{0}^{1} p_{n}(t) dt} = \frac{\mathbf{1}_{\mathcal{P}}}{\int_{0}^{1} p_{n}(t) dt} \quad \text{(as } p_{0} = 1),$$

telescopic product!

where $\mathbf{1}_{\mathcal{P}_{X_k}}$ is as in the algorithm above the indicator function of the k-th block. \int (any density) = 1 implies:

$$\mathrm{vol}(\mathcal{P}) = \int_{[0,1]^{6n+1}} \mathbf{1}_{\mathcal{P}} \ d\mathbf{x} = \int_0^1 p_n(t) \ dt.$$

A very efficient algorithm!

end of proof (uniformity & complexity):

Now if we choose a random uniform element in $[0,1]^{6n+1}$, the probability that it belongs to $\mathcal P$ is

$$\int_{[0,1]^{6n+1}} \mathbf{1}_{\mathcal{P}} d\mathbf{x}.$$

This is also the probability that a random uniform filling of our building block is correct (i.e., respects the order constraints).

This implies that $f_n = (6n+1)! \int_0^1 p_n(t) dt = |\mathcal{P}|! \operatorname{vol}(\mathcal{P})$.

Each step = computation and evaluation of the associated polynomial $p_n(z)$ (of degree proportional to n) \Rightarrow quadratic time complexity and quadratic space.

Jenga tableaux and the density method

	l ₇	7		$r_7 \longrightarrow$		
		16	17	19	21	
1	5	15	20	22		
	11	14				
		10	18			
		8				
3	6	7	9	13		
	2	4	12		•	
	$\stackrel{\longleftarrow}{\longleftarrow}$		$\overrightarrow{r_1}$			

U_1		U_{ℓ}	Z	V_1		V_r
	ℓ		X		r	\longrightarrow

Jenga! = Construct! in Swahili.

Given a shape encoded by $(\ell_i, r_i)_{i \in \mathbb{N}}$, what is the number of tableaux with n lines?

$$f_n = \Big(\sum_{i=1}^n (\ell_i + r_i + 1)\Big)! \int_0^1 p_n(x) dx.$$

$$p_{n}(z) = \int_{z < v_{1} < 1} \dots \int_{v_{r-1} < v_{r} < 1} \int_{0 < u_{\ell} < z} \dots \int_{0 < u_{1} < u_{2}} \int_{0 < x < z} p_{n-1}(x) dx du_{1} \dots du_{\ell} dv_{r} \dots dv_{1}$$

$$= \frac{z^{\ell_{n}} (1 - z)^{r_{n}}}{\ell_{n}! r_{n}!} \int_{0}^{z} p_{n-1}(x) dx \quad \text{with} \quad p_{1}(z) \frac{z^{\ell_{1}} (1 - z)^{r_{1}}}{\ell_{1}! r_{1}!}.$$

Special Jenga shapes

Theorem (1-periodic Jenga tableaux are D-finite)

The bivariate GF $P(t,z) = \sum_{n\geq 1} p_n(z)t^n$ is D-finite in t and z.

Proposition

For $r_i = 0$, $\forall i \geq 1$, the number f_n of Jenga tableaux is

$$f_n = \frac{(\sum_{i=1}^n (\ell_i + 1))!}{\prod_{i=1}^n \ell_i! (\sum_{j=1}^i (\ell_j + 1))}.$$

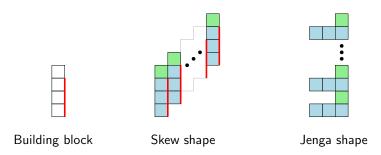
Proposition

For Jenga tableaux with period p, $L:=\sum_{i=1}^p\ell_i$, and $(r_i)_{i=0}^p=(0,\ldots,0)$, one has:

$$f_{kp+m} = f_m \left(\frac{(L+p)^L}{\prod_{i=1}^p \ell_i!} \right)^k \prod_{\substack{j=1\\ i \neq \ell_1 + \dots + \ell_i + i}}^{L+p} \frac{\Gamma\left(k + \frac{j+m}{L+p}\right)}{\Gamma\left(\frac{j+m}{L+p}\right)}.$$

Accordingly, the GF of such tableaux is the sum of *p* hypergeometric functions.

Skew tableaux with walls



Proposition

The number of above skew tableaux with n columns of height h is

$$f_n = \left(\frac{h^{h-2}}{(h-2)!}\right)^n \prod_{j=1}^{h-2} \frac{\Gamma\left(n + \frac{j}{h}\right)}{\Gamma\left(\frac{j}{h}\right)}.$$

<u>Proof:</u> Use a bijection between this class and periodic Jenga tableaux of period p = 2, $\ell_1 = h - 2$, $\ell_2 = 0$, and $r_i = 0$.

A classification of 2×2 periodic shapes

A periodic shape is the concatenation of n copies of a building block $\mathcal B$ of icells:

$$\mathcal{Y}=\mathcal{B}^n$$
.

A tableau \mathcal{Y} with periodic walls is a periodic shape filled with all integers from $\{1,\ldots,|\mathcal{B}|n\}$ respecting the induced order constraints.

$$\mathcal{B} =$$

There are a priori $2^6 = 64$ shapes, but some are in bijection (e.g., turn by 180 degrees and reverse labels). It turns out that it leads to 32 different sequences.

We now characterize all 2×2 shapes according to the nature of the counting sequence/generating function, which is either

- "simple" hypergeometric
- hypergeometric,
- algebraic,
- D-algebraic and beyond.

"Simple" hypergeometric cases

= cases where walls split tableaux into independent regions \Rightarrow product formulas

Class	Shape	Formula	Class	Shape	Formula	Class	Shape	Formula
P1	,	$4\frac{(4n)!}{24^n}$	P6	, ,	(4n)! 6n	P13	,	$\frac{3}{2} \frac{(4n)!}{3^n}$
P2		$\frac{(4n)!}{12^n}$	P7	,	$3\frac{(4n)!}{6^n}$	D1.4	, , ,	(4n)!
P3		$3\frac{(4n)!}{12^n}$	P8	,	$\frac{8}{5}(4n)! \frac{5^n}{24^n}$	P14	,	$\frac{(4n)!}{2^n}$
5.	, , ,	(4n)!	P9	,	$\frac{(4n)!}{4^n}$	P15	,	$2\frac{(4n)!}{2^n}$
P4	,	$\frac{(4n)!}{8^n}$	P10	,	$2\frac{(4n)!}{4^n}$	P16	,	$\frac{(4n)!}{(2n)! 2^n}$
	, ,	. (4 <i>n</i>)!	P11		$4\frac{(4n)!}{4^n}$	P17	,	$2\frac{(4n)!}{(2n)! 2^n}$
P5	,	$4\frac{(4n)!}{8^n}$	P12	,	$\frac{(4n)!}{3^n}$	P18	,	$\frac{(4n)!}{(2n)!}$
						P19	\square	(4n)!

Proofs: Choose and distribute elements according to constraints.

Hypergeometric cases

= cases with uniquely determined minimum or maximum

Class	Shape	Sequence	OEIS
H1	,	$\prod_{i=1}^{n} (4i-1)(4i-3)$	A101485
H2	,	$\prod_{i=1}^{n} (2i-1)(4i-1)$	A159605
НЗ	,	$2^{n+1}n!\prod_{i=1}^{n}(4i-3)$	$2^{n+1} \cdot A084943$
H4	,	$\binom{4n}{n}\prod_{i=1}^n(3i-1)$	$\binom{4n}{n}$ ·A008544
H5	,	$\binom{4n}{n}\prod_{i=1}^n(3i-2)$	$\binom{4n}{n}$ ·A007559
H6	,	$2^n n! \prod_{i=1}^n (4i-3)$	n! ·A084948
H7	,	$\prod_{i=1}^{n} (2i-1)(4i-1)$	A159605

Proofs:

- Models H1-H5: variants of Jenga tableaux with $r_i = 0$ for all i
- Models H6–H7: recursively decompose with respect to the location of the unique minimum or maximum.

Algebraic cases

= cases with no vertical walls

Class	Shape	Sequence	OEIS
A1		$Cat(2n) = \frac{1}{2n+1} \binom{4n}{2n}$	A048990
A2		$\binom{4n}{2n}$	A001448
А3	,	$2^{2n+1}\operatorname{Cat}(n)-\operatorname{Cat}(2n+1)$	A079489

Proofs:

- Models A1 and A2: Use bijections to Dyck bridges.
- Model A3: Decomposing at the first wall that cannot be removed gives

$$f_n = \mathsf{Cat}(2n) + \sum_{i=1}^n \mathsf{Cat}(2i-1)f_{n-i},$$

which we then solve with generating functions.

D-algebraic cases?

 \approx cases with a zig-zag-like pattern

Class	Shape	GF	OEIS	Example		
Z1	,	D-algebraic, and not D-finite: $\frac{\cos(t/\sqrt{2})^2 + \cosh(t/\sqrt{2})^2}{2\cos(t/\sqrt{2})\cosh(t/\sqrt{2})}$	related to A211212	12 16 6 15 13 14 7 10 8 3 5 9 11 2 4 1		
Z2		open problem!	_	3 5 8 9 11 13 14 15 2 10 4 7 1 16 6 12		
Z3	,	open problem!	_	2 4 5 8 11 12 14 15 13 3 16 7 9 6 10 1		

Proof for Z1: A permutation (a_1, \ldots, a_n) is an alternating permutation of type (k_1, \ldots, k_m) if

$$a_1 < \cdots < a_{k_1} > a_{k_1+1} < \cdots < a_{k_1+k_2} > a_{k_1+k_2+1} < \cdots < a_n$$
. Then, $k_i = 1$ gives classical alternating permutations;

while $k_1 = 3$, $k_2 = \cdots = k_n = 4$, and $k_{n+1} = 1$ gives Z1.

A generalization of [Carlitz 73] then leads to

Leonard Carlitz (1907-1999) 771 articles!

$$F(t) = \frac{E_{4,3}(t)E_{4,1}(t)}{E_{4,0}(t)} + E_{4,0}(t) \quad \text{where} \quad E_{k,r}(t) = \sum_{n \ge 0} (-1)^n \frac{t^{nk+r}}{(nk+r)!}. \quad \Box$$

$$E_{k,r}(t) = \sum_{n=0}^{\infty} (-1)^n \frac{t^{n}}{(nk)!}$$

$$-1)^n \frac{t^{m+r}}{(nk+r)!}$$
.

Conclusion

- 3 ways to enumerate and generate Young tableaux with walls: hook-length type formulas, bijections, density method.
- Approach different from [Greene Nijenhuis Wilf 84].
 They used the existence of a simple product formula (hook-length formula).
- Brute-force generation \rightarrow exponential cost. Generation via our density method $\rightarrow O(n^2)$ cost.
- A field to explore: examine more families of posets (e.g., permutations, Young tableaux, increasing trees, urn models in [Banderier Marchal Wallner 20]).
- Asymptotics? D-finite? D-algebraic? Links with other objects?

3	5	8	9	11	13	14	15
2	10	4	7	1	16	6	12

$$\Theta\left(n!\ C^n e^{a_1 n^{\sigma}} n^{\alpha}\right)$$
 ?

