
Local parking algorithms on Z

Philippe Nadeau (CNRS & Univ Lyon 1)

GT Combinatoire et Interactions, LaBRi, 2 mai 2022

What this talk is about

We define and study a large class of parking procedures that extend the classical
parking algorithm in a new way.

What this talk is about

We define and study a large class of parking procedures that extend the classical
parking algorithm in a new way.

Goal: Show that certain local conditions will ensure that the classical enumerative
sequence (r + 1)r−1 holds “universally”.

More generally, these local parking procedures exhibit nice combinatorics.

What this talk is about

We define and study a large class of parking procedures that extend the classical
parking algorithm in a new way.

(In particular, the goal is not to define any actual, reasonable parking procedure for
actual, reasonable drivers.)

Goal: Show that certain local conditions will ensure that the classical enumerative
sequence (r + 1)r−1 holds “universally”.

More generally, these local parking procedures exhibit nice combinatorics.

What this talk is about

We define and study a large class of parking procedures that extend the classical
parking algorithm in a new way.

(In particular, the goal is not to define any actual, reasonable parking procedure for
actual, reasonable drivers.)

A word of warning

Goal: Show that certain local conditions will ensure that the classical enumerative
sequence (r + 1)r−1 holds “universally”.

This is a work in progress. Bibliographical research was done, but some constructions
and results may already be in the literature somewhere...
If you notice such an occurrence, please forgive my ignorance and let me know!

More generally, these local parking procedures exhibit nice combinatorics.

Classical Parking Functions

Classical parking procedure ([Konheim-Weiss ’66]).
− r cars want to park on an empty street where the spots are labeled by Z .
− The cars arrive successively, and the ith car has a preferred spot ai.
− If the spot is available, it parks there.
− If not, it parks in the nearest available spot on the right.

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

a1a2a3a4a5a6a7 = 3525895

Classical Parking Functions

Classical parking procedure ([Konheim-Weiss ’66]).
− r cars want to park on an empty street where the spots are labeled by Z .
− The cars arrive successively, and the ith car has a preferred spot ai.
− If the spot is available, it parks there.
− If not, it parks in the nearest available spot on the right.

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

a1a2a3a4a5a6a7 = 3525895

Classical Parking Functions

Classical parking procedure ([Konheim-Weiss ’66]).
− r cars want to park on an empty street where the spots are labeled by Z .
− The cars arrive successively, and the ith car has a preferred spot ai.
− If the spot is available, it parks there.
− If not, it parks in the nearest available spot on the right.

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

a1a2a3a4a5a6a7 = 3525895

Classical Parking Functions

Classical parking procedure ([Konheim-Weiss ’66]).
− r cars want to park on an empty street where the spots are labeled by Z .
− The cars arrive successively, and the ith car has a preferred spot ai.
− If the spot is available, it parks there.
− If not, it parks in the nearest available spot on the right.

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

a1a2a3a4a5a6a7 = 3525895

Classical Parking Functions

Classical parking procedure ([Konheim-Weiss ’66]).
− r cars want to park on an empty street where the spots are labeled by Z .
− The cars arrive successively, and the ith car has a preferred spot ai.
− If the spot is available, it parks there.
− If not, it parks in the nearest available spot on the right.

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

a1a2a3a4a5a6a7 = 3525895

Classical Parking Functions

Classical parking procedure ([Konheim-Weiss ’66]).
− r cars want to park on an empty street where the spots are labeled by Z .
− The cars arrive successively, and the ith car has a preferred spot ai.
− If the spot is available, it parks there.
− If not, it parks in the nearest available spot on the right.

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

a1a2a3a4a5a6a7 = 3525895

Classical Parking Functions

Classical parking procedure ([Konheim-Weiss ’66]).
− r cars want to park on an empty street where the spots are labeled by Z .
− The cars arrive successively, and the ith car has a preferred spot ai.
− If the spot is available, it parks there.
− If not, it parks in the nearest available spot on the right.

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

a1a2a3a4a5a6a7 = 3525895

Classical Parking Functions

Classical parking procedure ([Konheim-Weiss ’66]).
− r cars want to park on an empty street where the spots are labeled by Z .
− The cars arrive successively, and the ith car has a preferred spot ai.
− If the spot is available, it parks there.
− If not, it parks in the nearest available spot on the right.

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

a1a2a3a4a5a6a7 = 3525895

Classical Parking Functions

Classical parking procedure ([Konheim-Weiss ’66]).
− r cars want to park on an empty street where the spots are labeled by Z .
− The cars arrive successively, and the ith car has a preferred spot ai.
− If the spot is available, it parks there.
− If not, it parks in the nearest available spot on the right.

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

a1a2a3a4a5a6a7 = 3525895

Definition. A word a1a2 ... ar is called a parking word (or function) if the parking
procedure ends up with all spots 1, ... , r occupied.

Example.

(r = 1) 1
(r = 2) 11, 12, 21
(r = 3) 111, 112, 113, 121, 122, 123, 131, 132, 211, 212, 213, 221, 231, 311, 312, 321

Classical Parking Functions

Proposition. a1a2 · · · ar is a parking function
⇔ for k = 1, ... , r, there are at least k indices i such that 1 ≤ ai ≤ k.

Corollary (Abelian property). As a consequence, if a1a2 · · · ar is a parking function then
so is aff(1) · · · aff(r) for any permutation ff of {1, ... , r}.

Proposition. The number of parking functions of length r is (r + 1)r−1

Proof. Elegant proof by Pollak (c. ’74), which we generalize later.

(r = 1) 1
(r = 2) 11, 12, 21
(r = 3) 111, 112, 113, 121, 122, 123, 131, 132, 211, 212, 213, 221, 231, 311, 312, 321

Classical Parking Functions

Proposition. a1a2 · · · ar is a parking function
⇔ for k = 1, ... , r, there are at least k indices i such that 1 ≤ ai ≤ k.

Corollary (Abelian property). As a consequence, if a1a2 · · · ar is a parking function then
so is aff(1) · · · aff(r) for any permutation ff of {1, ... , r}.

Proposition. The number of parking functions of length r is (r + 1)r−1

Occurrences of parking functions (see various talks by R. Stanley, survey by C. Yan).

• Minimal factorizations of the long cycle (1, 2, ... , r + 1) in transpositions.
• Maximal chains in the lattice of noncrossing partitions

• Diagonal harmonics for the symmetric group.

• Regions of the Shi hyperplane arrangement {xi − xj = 0, 1}
• Volume of the Pitman-Stanley polytope.

Proof. Elegant proof by Pollak (c. ’74), which we generalize later.

Classical Parking Functions

Proposition. a1a2 · · · ar is a parking function
⇔ for k = 1, ... , r, there are at least k indices i such that 1 ≤ ai ≤ k.

Corollary (Abelian property). As a consequence, if a1a2 · · · ar is a parking function then
so is aff(1) · · · aff(r) for any permutation ff of {1, ... , r}.

Proposition. The number of parking functions of length r is (r + 1)r−1

Occurrences of parking functions (see various talks by R. Stanley, survey by C. Yan).

• Minimal factorizations of the long cycle (1, 2, ... , r + 1) in transpositions.
• Maximal chains in the lattice of noncrossing partitions

• Diagonal harmonics for the symmetric group.

• Regions of the Shi hyperplane arrangement {xi − xj = 0, 1}
• Volume of the Pitman-Stanley polytope.

Generalizations: u-parking functions, G-parking functions...

Proof. Elegant proof by Pollak (c. ’74), which we generalize later.

Generalized Parking procedures

We first relax the parking condition as follows :

“If your desired spot is occupied, you must park in the next
spot available either to the left or to the right.”

Generalized Parking procedures

We first relax the parking condition as follows :

In more mathematical terms, a parking procedure will be modeled by a function

P : Z∗ = {Words over Z} → Finset(Z) = {Finite subsets of Z}.

“If your desired spot is occupied, you must park in the next
spot available either to the left or to the right.”

"List of wanted spots" "Set of occupied spots"

satisfying three natural conditions:

Generalized Parking procedures

We first relax the parking condition as follows :

In more mathematical terms, a parking procedure will be modeled by a function

P : Z∗ = {Words over Z} → Finset(Z) = {Finite subsets of Z}.

1. (Accessible parking) For any a1, a2, ... ∈ Z, #P(a1 · · · ai) = i ∀i, and
∅ = P(›) ⊂ P(a1) ⊂ · · · ⊂ P(a1 · · · ai) ⊂ P(a1 · · · ai+1) ⊂ · · ·

“If your desired spot is occupied, you must park in the next
spot available either to the left or to the right.”

"List of wanted spots" "Set of occupied spots"

satisfying three natural conditions:

Generalized Parking procedures

We first relax the parking condition as follows :

In more mathematical terms, a parking procedure will be modeled by a function

P : Z∗ = {Words over Z} → Finset(Z) = {Finite subsets of Z}.

1. (Accessible parking) For any a1, a2, ... ∈ Z, #P(a1 · · · ai) = i ∀i, and
∅ = P(›) ⊂ P(a1) ⊂ · · · ⊂ P(a1 · · · ai) ⊂ P(a1 · · · ai+1) ⊂ · · ·

• {lastSpotP(Wa)} = P(Wa) \ P(W).

“If your desired spot is occupied, you must park in the next
spot available either to the left or to the right.”

• ıa1···ar
P : P(a1 · · · ar)→ {1, ... , r} is a bijection.

"List of wanted spots" "Set of occupied spots"

(= the spot where the car eventually parks.)

satisfying three natural conditions:

lastSpotP(a1a2 · · · ai) 7→ i

Generalized Parking procedures

We first relax the parking condition as follows :

In more mathematical terms, a parking procedure will be modeled by a function

P : Z∗ = {Words over Z} → Finset(Z) = {Finite subsets of Z}.

1. (Accessible parking) For any a1, a2, ... ∈ Z, #P(a1 · · · ai) = i ∀i, and
∅ = P(›) ⊂ P(a1) ⊂ · · · ⊂ P(a1 · · · ai) ⊂ P(a1 · · · ai+1) ⊂ · · ·

• {lastSpotP(Wa)} = P(Wa) \ P(W).

“If your desired spot is occupied, you must park in the next
spot available either to the left or to the right.”

• ıa1···ar
P : P(a1 · · · ar)→ {1, ... , r} is a bijection.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

W = 3525895 1

"List of wanted spots" "Set of occupied spots"

(= the spot where the car eventually parks.)

satisfying three natural conditions:

1234567

lastSpotP(a1a2 · · · ai) 7→ i

Generalized Parking procedures

We first relax the parking condition as follows :

In more mathematical terms, a parking procedure will be modeled by a function

P : Z∗ = {Words over Z} → Finset(Z) = {Finite subsets of Z}.

1. (Accessible parking) For any a1, a2, ... ∈ Z, #P(a1 · · · ai) = i ∀i, and
∅ = P(›) ⊂ P(a1) ⊂ · · · ⊂ P(a1 · · · ai) ⊂ P(a1 · · · ai+1) ⊂ · · ·

• {lastSpotP(Wa)} = P(Wa) \ P(W).

“If your desired spot is occupied, you must park in the next
spot available either to the left or to the right.”

• ıa1···ar
P : P(a1 · · · ar)→ {1, ... , r} is a bijection.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

W = 3525895 1 2

"List of wanted spots" "Set of occupied spots"

(= the spot where the car eventually parks.)

satisfying three natural conditions:

1234567

lastSpotP(a1a2 · · · ai) 7→ i

Generalized Parking procedures

We first relax the parking condition as follows :

In more mathematical terms, a parking procedure will be modeled by a function

P : Z∗ = {Words over Z} → Finset(Z) = {Finite subsets of Z}.

1. (Accessible parking) For any a1, a2, ... ∈ Z, #P(a1 · · · ai) = i ∀i, and
∅ = P(›) ⊂ P(a1) ⊂ · · · ⊂ P(a1 · · · ai) ⊂ P(a1 · · · ai+1) ⊂ · · ·

• {lastSpotP(Wa)} = P(Wa) \ P(W).

“If your desired spot is occupied, you must park in the next
spot available either to the left or to the right.”

• ıa1···ar
P : P(a1 · · · ar)→ {1, ... , r} is a bijection.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

W = 3525895 1 23

"List of wanted spots" "Set of occupied spots"

(= the spot where the car eventually parks.)

satisfying three natural conditions:

1234567

lastSpotP(a1a2 · · · ai) 7→ i

Generalized Parking procedures

We first relax the parking condition as follows :

In more mathematical terms, a parking procedure will be modeled by a function

P : Z∗ = {Words over Z} → Finset(Z) = {Finite subsets of Z}.

1. (Accessible parking) For any a1, a2, ... ∈ Z, #P(a1 · · · ai) = i ∀i, and
∅ = P(›) ⊂ P(a1) ⊂ · · · ⊂ P(a1 · · · ai) ⊂ P(a1 · · · ai+1) ⊂ · · ·

• {lastSpotP(Wa)} = P(Wa) \ P(W).

“If your desired spot is occupied, you must park in the next
spot available either to the left or to the right.”

• ıa1···ar
P : P(a1 · · · ar)→ {1, ... , r} is a bijection.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

W = 3525895 1 23 4

"List of wanted spots" "Set of occupied spots"

(= the spot where the car eventually parks.)

satisfying three natural conditions:

1234567

lastSpotP(a1a2 · · · ai) 7→ i

Generalized Parking procedures

We first relax the parking condition as follows :

In more mathematical terms, a parking procedure will be modeled by a function

P : Z∗ = {Words over Z} → Finset(Z) = {Finite subsets of Z}.

1. (Accessible parking) For any a1, a2, ... ∈ Z, #P(a1 · · · ai) = i ∀i, and
∅ = P(›) ⊂ P(a1) ⊂ · · · ⊂ P(a1 · · · ai) ⊂ P(a1 · · · ai+1) ⊂ · · ·

• {lastSpotP(Wa)} = P(Wa) \ P(W).

“If your desired spot is occupied, you must park in the next
spot available either to the left or to the right.”

• ıa1···ar
P : P(a1 · · · ar)→ {1, ... , r} is a bijection.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

W = 3525895 1 23 4 7 5 6
ıW
P

2 3 5 6 7 8 9

"List of wanted spots" "Set of occupied spots"

(= the spot where the car eventually parks.)

satisfying three natural conditions:

1234567

lastSpotP(a1a2 · · · ai) 7→ i

Generalized Parking procedures

2. (Lucky parking) If a =∈ P(W), then lastSpotP(Wa) = a.

• If your desired spot is free, park there:

Generalized Parking procedures

2. (Lucky parking) If a =∈ P(W), then lastSpotP(Wa) = a.

• We call interval I of F ∈ Finset(Z) a maximal subset of consecutive integers.

• If your desired spot is free, park there:

The last condition encodes “next available spot left or right”.

Generalized Parking procedures

2. (Lucky parking) If a =∈ P(W), then lastSpotP(Wa) = a.

3. (Close parking) If a ∈ P(W), let [t, u] be the interval of P(W) such that a ∈ [t, u].
Then lastSpotP(Wa) ∈ {t− 1, u + 1}.

• We call interval I of F ∈ Finset(Z) a maximal subset of consecutive integers.

Pclassical consists in picking u + 1 (= “Right”) each time.

• If your desired spot is free, park there:

(= {Le�, Right})

The last condition encodes “next available spot left or right”.

Generalized Parking procedures

2. (Lucky parking) If a =∈ P(W), then lastSpotP(Wa) = a.

3. (Close parking) If a ∈ P(W), let [t, u] be the interval of P(W) such that a ∈ [t, u].
Then lastSpotP(Wa) ∈ {t− 1, u + 1}.

• We call interval I of F ∈ Finset(Z) a maximal subset of consecutive integers.

Definition. A parking procedure is a function P : Z∗ → Finset(Z) satisfying the three
conditions (Accessible parking),(Lucky parking),(Close parking).

Pclassical consists in picking u + 1 (= “Right”) each time.

Definition. A P-parking word is a word a1 · · · ar such that P(a1 · · · ar) = {1, ... , r}.

• If your desired spot is free, park there:

(= {Le�, Right})

The last condition encodes “next available spot left or right”.

Generalized Parking procedures

2. (Lucky parking) If a =∈ P(W), then lastSpotP(Wa) = a.

3. (Close parking) If a ∈ P(W), let [t, u] be the interval of P(W) such that a ∈ [t, u].
Then lastSpotP(Wa) ∈ {t− 1, u + 1}.

• We call interval I of F ∈ Finset(Z) a maximal subset of consecutive integers.

Definition. A parking procedure is a function P : Z∗ → Finset(Z) satisfying the three
conditions (Accessible parking),(Lucky parking),(Close parking).

Pclassical consists in picking u + 1 (= “Right”) each time.

Remark (1). A P-parking word of length r necessarily has all letters ai ∈ {1, ... , r}.

Definition. A P-parking word is a word a1 · · · ar such that P(a1 · · · ar) = {1, ... , r}.

• If your desired spot is free, park there:

(= {Le�, Right})

The last condition encodes “next available spot left or right”.

Remark (2). Permutations of {1, ... , r} are P-parking for any procedure P.

The procedure PCS

To characterize a parking procedure P, we simply need a rule to pick Left or Right
when our desired spot is already occupied.

The procedure PCS

To characterize a parking procedure P, we simply need a rule to pick Left or Right
when our desired spot is already occupied.

Definition (Procedure PCS). Let a ∈ I interval of P(a1 · · · ar).
Let j ∈ {1, ... , r} be the maximal index such that aj ∈ I.
Rule : If a < aj park left of I, and if a ≥ aj park right.

[N.-Tewari ’22+]

The procedure PCS

To characterize a parking procedure P, we simply need a rule to pick Left or Right
when our desired spot is already occupied.

Definition (Procedure PCS). Let a ∈ I interval of P(a1 · · · ar).
Let j ∈ {1, ... , r} be the maximal index such that aj ∈ I.
Rule : If a < aj park left of I, and if a ≥ aj park right.

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

a1a2a3a4a5a6a7 = 5.11.8.3.8.4.3

[N.-Tewari ’22+]

The procedure PCS

To characterize a parking procedure P, we simply need a rule to pick Left or Right
when our desired spot is already occupied.

Definition (Procedure PCS). Let a ∈ I interval of P(a1 · · · ar).
Let j ∈ {1, ... , r} be the maximal index such that aj ∈ I.
Rule : If a < aj park left of I, and if a ≥ aj park right.

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

a1a2a3a4a5a6a7 = 5.11.8.3.8.4.3

[N.-Tewari ’22+]

The crosses record
the values ‘aj’ in each
interval.

The procedure PCS

To characterize a parking procedure P, we simply need a rule to pick Left or Right
when our desired spot is already occupied.

Definition (Procedure PCS). Let a ∈ I interval of P(a1 · · · ar).
Let j ∈ {1, ... , r} be the maximal index such that aj ∈ I.
Rule : If a < aj park left of I, and if a ≥ aj park right.

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

a1a2a3a4a5a6a7 = 5.11.8.3.8.4.3

[N.-Tewari ’22+]

The crosses record
the values ‘aj’ in each
interval.

The procedure PCS

To characterize a parking procedure P, we simply need a rule to pick Left or Right
when our desired spot is already occupied.

Definition (Procedure PCS). Let a ∈ I interval of P(a1 · · · ar).
Let j ∈ {1, ... , r} be the maximal index such that aj ∈ I.
Rule : If a < aj park left of I, and if a ≥ aj park right.

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

a1a2a3a4a5a6a7 = 5.11.8.3.8.4.3

[N.-Tewari ’22+]

The crosses record
the values ‘aj’ in each
interval.

The procedure PCS

To characterize a parking procedure P, we simply need a rule to pick Left or Right
when our desired spot is already occupied.

Definition (Procedure PCS). Let a ∈ I interval of P(a1 · · · ar).
Let j ∈ {1, ... , r} be the maximal index such that aj ∈ I.
Rule : If a < aj park left of I, and if a ≥ aj park right.

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

a1a2a3a4a5a6a7 = 5.11.8.3.8.4.3

[N.-Tewari ’22+]

The crosses record
the values ‘aj’ in each
interval.

The procedure PCS

To characterize a parking procedure P, we simply need a rule to pick Left or Right
when our desired spot is already occupied.

Definition (Procedure PCS). Let a ∈ I interval of P(a1 · · · ar).
Let j ∈ {1, ... , r} be the maximal index such that aj ∈ I.
Rule : If a < aj park left of I, and if a ≥ aj park right.

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

a1a2a3a4a5a6a7 = 5.11.8.3.8.4.3

[N.-Tewari ’22+]

The crosses record
the values ‘aj’ in each
interval.

The procedure PCS

To characterize a parking procedure P, we simply need a rule to pick Left or Right
when our desired spot is already occupied.

Definition (Procedure PCS). Let a ∈ I interval of P(a1 · · · ar).
Let j ∈ {1, ... , r} be the maximal index such that aj ∈ I.
Rule : If a < aj park left of I, and if a ≥ aj park right.

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

a1a2a3a4a5a6a7 = 5.11.8.3.8.4.3

[N.-Tewari ’22+]

The crosses record
the values ‘aj’ in each
interval.

The procedure PCS

To characterize a parking procedure P, we simply need a rule to pick Left or Right
when our desired spot is already occupied.

Definition (Procedure PCS). Let a ∈ I interval of P(a1 · · · ar).
Let j ∈ {1, ... , r} be the maximal index such that aj ∈ I.
Rule : If a < aj park left of I, and if a ≥ aj park right.

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

a1a2a3a4a5a6a7 = 5.11.8.3.8.4.3

[N.-Tewari ’22+]

The crosses record
the values ‘aj’ in each
interval.

The procedure PCS

To characterize a parking procedure P, we simply need a rule to pick Left or Right
when our desired spot is already occupied.

Definition (Procedure PCS). Let a ∈ I interval of P(a1 · · · ar).
Let j ∈ {1, ... , r} be the maximal index such that aj ∈ I.
Rule : If a < aj park left of I, and if a ≥ aj park right.

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

a1a2a3a4a5a6a7 = 5.11.8.3.8.4.3

For r = 3, they coincide with classical parking words except 232 is a PCS-parking
word while 121 is not. In particular PCS is not abelian.

Proposition. The number of PCS-parking words of length r is (r + 1)r−1

[N.-Tewari ’22+]

The crosses record
the values ‘aj’ in each
interval.

The procedure PCS

To characterize a parking procedure P, we simply need a rule to pick Left or Right
when our desired spot is already occupied.

Definition (Procedure PCS). Let a ∈ I interval of P(a1 · · · ar).
Let j ∈ {1, ... , r} be the maximal index such that aj ∈ I.
Rule : If a < aj park left of I, and if a ≥ aj park right.

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12−1

a1a2a3a4a5a6a7 = 5.11.8.3.8.4.3

For r = 3, they coincide with classical parking words except 232 is a PCS-parking
word while 121 is not. In particular PCS is not abelian.

Proposition. The number of PCS-parking words of length r is (r + 1)r−1

[N.-Tewari ’22+]

The crosses record
the values ‘aj’ in each
interval.

Definition (Markov property). A procedure P is calledMarkovian if there is a function
M : Finset(Z)× Z→ Fin(Z) such that P(a1 · · · ara) = M(P(a1 · · · ar), a)

PCS is not Markovian, while Pclassical clearly is.

Encoding as binary forests

(Goal: Lift a parking procedure P to an injective encoding bP.)

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Definition. A binary forest F with support A ∈ Finset(Z) is the data of a binary tree
with |I| nodes for each interval I of A.

A = {2, 3, 4, 5, 6, 7} ∪ {11} ∪ {14, 15}

Encoding as binary forests

(Goal: Lift a parking procedure P to an injective encoding bP.)

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Definition. A binary forest F with support A ∈ Finset(Z) is the data of a binary tree
with |I| nodes for each interval I of A.

A = {2, 3, 4, 5, 6, 7} ∪ {11} ∪ {14, 15}

Remark. The nodes are canonically labeled by an infix transversal.

Encoding as binary forests

(Goal: Lift a parking procedure P to an injective encoding bP.)

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Definition. A binary forest F with support A ∈ Finset(Z) is the data of a binary tree
with |I| nodes for each interval I of A.

A = {2, 3, 4, 5, 6, 7} ∪ {11} ∪ {14, 15}

Remark. The nodes are canonically labeled by an infix transversal.

bP : W ∈ Z∗ 7→ (P,Q) ∈
[

F forest

F(F)× Dec(F).

Given any parking procedure P, we now define

Encoding as binary forests

(Goal: Lift a parking procedure P to an injective encoding bP.)

Example.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Definition. A binary forest F with support A ∈ Finset(Z) is the data of a binary tree
with |I| nodes for each interval I of A.

A = {2, 3, 4, 5, 6, 7} ∪ {11} ∪ {14, 15}

Remark. The nodes are canonically labeled by an infix transversal.

bP : W ∈ Z∗ 7→ (P,Q) ∈
[

F forest

F(F)× Dec(F).

Decreasing forest, encodes
exactly the bijection ıW

P

Information about the
original desired spots

Given any parking procedure P, we now define Labelings of the forest F

Encoding as binary forests

0 1 2 3 4 5 6 7 8 9 10 11 12

W = a1a2a3a4a5a6a7 = 5.11.8.3.8.4.3Definition (by example).

0 1 2 3 4 5 6 7 8 9 10 11 12

P(W)

Q(W)

Encoding as binary forests

0 1 2 3 4 5 6 7 8 9 10 11 12

W = a1a2a3a4a5a6a7 = 5.11.8.3.8.4.3Definition (by example).

0 1 2 3 4 5 6 7 8 9 10 11 12

P(W)

Q(W)

5

1

Encoding as binary forests

0 1 2 3 4 5 6 7 8 9 10 11 12

W = a1a2a3a4a5a6a7 = 5.11.8.3.8.4.3Definition (by example).

0 1 2 3 4 5 6 7 8 9 10 11 12

P(W)

Q(W)

5

1

11

2

Encoding as binary forests

0 1 2 3 4 5 6 7 8 9 10 11 12

W = a1a2a3a4a5a6a7 = 5.11.8.3.8.4.3Definition (by example).

0 1 2 3 4 5 6 7 8 9 10 11 12

P(W)

Q(W)

5

1

11

2

8

3

Encoding as binary forests

0 1 2 3 4 5 6 7 8 9 10 11 12

W = a1a2a3a4a5a6a7 = 5.11.8.3.8.4.3Definition (by example).

0 1 2 3 4 5 6 7 8 9 10 11 12

P(W)

Q(W)

5

1

11

2

8

3

3

4

Encoding as binary forests

0 1 2 3 4 5 6 7 8 9 10 11 12

W = a1a2a3a4a5a6a7 = 5.11.8.3.8.4.3Definition (by example).

0 1 2 3 4 5 6 7 8 9 10 11 12

P(W)

Q(W)

5

1

11

2

8

3

3

4

8

5

Encoding as binary forests

0 1 2 3 4 5 6 7 8 9 10 11 12

W = a1a2a3a4a5a6a7 = 5.11.8.3.8.4.3Definition (by example).

0 1 2 3 4 5 6 7 8 9 10 11 12

P(W)

Q(W)

5

1

11

2

8

3

3

4

8

5

4

6

Encoding as binary forests

0 1 2 3 4 5 6 7 8 9 10 11 12

W = a1a2a3a4a5a6a7 = 5.11.8.3.8.4.3Definition (by example).

0 1 2 3 4 5 6 7 8 9 10 11 12

P(W)

Q(W)

5

1

11

2

8

3

3

4

8

5

4

6

3

7

Encoding as binary forests

0 1 2 3 4 5 6 7 8 9 10 11 12

W = a1a2a3a4a5a6a7 = 5.11.8.3.8.4.3Definition (by example).

0 1 2 3 4 5 6 7 8 9 10 11 12

P(W)

Q(W)

bP(W) = (P(W),Q(W)) ∈
[

F forest

F(F)× Dec(F).

5

1

11

2

8

3

3

4

8

5

4

6

3

7

Definition of bP. The forest F is constructed inductively: if the actual parking spot is j,
create a root node with canonical label j, and attach subtrees if necessary.
If the desired spot was ai, the label in P is ai and the label in Q is i.

Encoding as binary forests

0 1 2 3 4 5 6 7 8 9 10 11 12

W = a1a2a3a4a5a6a7 = 5.11.8.3.8.4.3Definition (by example).

0 1 2 3 4 5 6 7 8 9 10 11 12

P(W)

Q(W)

bP(W) = (P(W),Q(W)) ∈
[

F forest

F(F)× Dec(F).

5

1

11

2

8

3

3

4

8

5

4

6

3

7

Some facts.
• bP is injective, and P(W) is the support of the forest F in bP(W).
• If the letters ofW are distinct, one has essentially the Sylvester correspondence.
• But the image cannot be “nice” for general P...

Definition of bP. The forest F is constructed inductively: if the actual parking spot is j,
create a root node with canonical label j, and attach subtrees if necessary.
If the desired spot was ai, the label in P is ai and the label in Q is i.

Local parking procedures

We add two more “axioms” for a parking procedure P : Z∗ → Finset(Z).

Local parking procedures

We add two more “axioms” for a parking procedure P : Z∗ → Finset(Z).

• Let fi be the shift i 7→ i + 1 on Z, extended to Z∗ and Finset(Z).

Local parking procedures

We add two more “axioms” for a parking procedure P : Z∗ → Finset(Z).

(Shift invariance) For anyW, P(fi(W)) = fi(P(W)).

• Let fi be the shift i 7→ i + 1 on Z, extended to Z∗ and Finset(Z).

Local parking procedures

We add two more “axioms” for a parking procedure P : Z∗ → Finset(Z).

(Shift invariance) For anyW, P(fi(W)) = fi(P(W)).

• Let fi be the shift i 7→ i + 1 on Z, extended to Z∗ and Finset(Z).

• For any wordW and any subset I ⊂ P(W), defineW|I as the subword
corresponding to the cars that parked in I.

Local parking procedures

We add two more “axioms” for a parking procedure P : Z∗ → Finset(Z).

(Shift invariance) For anyW, P(fi(W)) = fi(P(W)).

(Local decision) LetW, a, I such that I is an interval of P(W) and a ∈ I.
Then lastSpotP(Wa) = lastSpotP(W|Ia).

• Let fi be the shift i 7→ i + 1 on Z, extended to Z∗ and Finset(Z).

• For any wordW and any subset I ⊂ P(W), defineW|I as the subword
corresponding to the cars that parked in I.

Local parking procedures

We add two more “axioms” for a parking procedure P : Z∗ → Finset(Z).

(Shift invariance) For anyW, P(fi(W)) = fi(P(W)).

(Local decision) LetW, a, I such that I is an interval of P(W) and a ∈ I.
Then lastSpotP(Wa) = lastSpotP(W|Ia).

• Let fi be the shift i 7→ i + 1 on Z, extended to Z∗ and Finset(Z).

• For any wordW and any subset I ⊂ P(W), defineW|I as the subword
corresponding to the cars that parked in I.

Definition. A parking procedure P is called local if it satisfies the extra axioms
(Shift invariance) and (Local decision).

Remark. When P is local, it is entirely characterized by the data of P(Wa) when
P(W) = {1, 2, ... , r}, i.e. W is P-parking.

Local parking procedures

We add two more “axioms” for a parking procedure P : Z∗ → Finset(Z).

(Shift invariance) For anyW, P(fi(W)) = fi(P(W)).

(Local decision) LetW, a, I such that I is an interval of P(W) and a ∈ I.
Then lastSpotP(Wa) = lastSpotP(W|Ia).

• Let fi be the shift i 7→ i + 1 on Z, extended to Z∗ and Finset(Z).

• For any wordW and any subset I ⊂ P(W), defineW|I as the subword
corresponding to the cars that parked in I.

Definition. A parking procedure P is called local if it satisfies the extra axioms
(Shift invariance) and (Local decision).

Remark. When P is local, it is entirely characterized by the data of P(Wa) when
P(W) = {1, 2, ... , r}, i.e. W is P-parking.

Proposition. If P is local, there is a class of labeled forests FP(F) ⊂ F(F) such thatbP : Z∗ →
S

F forest FP(F)× Dec(F) is a bijection.

Enumeration

Theorem ([N. ’22+]). For any local parking procedure P, the number of P-parking
words of size r is (r + 1)r−1.

Enumeration

Theorem ([N. ’22+]). For any local parking procedure P, the number of P-parking
words of size r is (r + 1)r−1.

Proof sketch: We extend Pollak’s argument to the local case.
Idea: project P to a cyclic parking procedure P r+1 on Zr+1 = Z=(r + 1)Z.

Enumeration

Theorem ([N. ’22+]). For any local parking procedure P, the number of P-parking
words of size r is (r + 1)r−1.

Proof sketch: We extend Pollak’s argument to the local case.

Definition (P r+1 : Z≤rr+1 → Subsets of Zr+1).
Let J be a cyclic interval of P r+1(w), and ā ∈ J.
• “Lift” J, ā,w to {1, ... , |J|}, a,W in Z.
• Pick left or right for P r+1(wa) as in P(Wa).

1 2
3

4
5

6
7

8

9 = 0

Idea: project P to a cyclic parking procedure P r+1 on Zr+1 = Z=(r + 1)Z.

r = 8

Enumeration

Theorem ([N. ’22+]). For any local parking procedure P, the number of P-parking
words of size r is (r + 1)r−1.

Proof sketch: We extend Pollak’s argument to the local case.

Definition (P r+1 : Z≤rr+1 → Subsets of Zr+1).
Let J be a cyclic interval of P r+1(w), and ā ∈ J.
• “Lift” J, ā,w to {1, ... , |J|}, a,W in Z.
• Pick left or right for P r+1(wa) as in P(Wa).

Example. Suppose w = 1941 has P9(w) = {8̄, 9̄ = 0̄, 1̄} t {4̄} ⊂ Z9

Pick ā = 8̄. We lift {8̄, 9̄ = 0̄, 1̄} to {1, 2, 3}, 8̄ to 1, and 1941 to 3136.
Then P9(1941.8̄) is determined by P(3136.1).

1 2
3

4
5

6
7

8

9 = 0

Idea: project P to a cyclic parking procedure P r+1 on Zr+1 = Z=(r + 1)Z.

r = 8

Enumeration

Theorem ([N. ’22+]). For any local parking procedure P, the number of P-parking
words of size r is (r + 1)r−1.

Proof sketch: We extend Pollak’s argument to the local case.

Definition (P r+1 : Z≤rr+1 → Subsets of Zr+1).
Let J be a cyclic interval of P r+1(w), and ā ∈ J.
• “Lift” J, ā,w to {1, ... , |J|}, a,W in Z.
• Pick left or right for P r+1(wa) as in P(Wa).

Lemma (1). LetW ∈ {1, ... , r + 1}r. Then
W is a P-parking function⇔P r+1(W mod (r + 1)) has empty spot 0̄.
Lemma (2). Let w ∈ Zr

r+1 have empty spot k.
Then fī i(w) ∈ Zr

r+1 has empty spot k + i for i = 0, 1, ... , r.

Example. Suppose w = 1941 has P9(w) = {8̄, 9̄ = 0̄, 1̄} t {4̄} ⊂ Z9

Pick ā = 8̄. We lift {8̄, 9̄ = 0̄, 1̄} to {1, 2, 3}, 8̄ to 1, and 1941 to 3136.
Then P9(1941.8̄) is determined by P(3136.1).

1 2
3

4
5

6
7

8

9 = 0

Idea: project P to a cyclic parking procedure P r+1 on Zr+1 = Z=(r + 1)Z.

The theorem then follows from the following lemmas:

r = 8

Extension 1: Probabilization

The classical parking procedure and functions naturally lead to probabilistic questions:
see Konheim–Weiss, Flajolet–Poblete–Viola, Diaconis–Yan, ...

Extension 1: Probabilization

The classical parking procedure and functions naturally lead to probabilistic questions:
see Konheim–Weiss, Flajolet–Poblete–Viola, Diaconis–Yan, ...

We can probabilize the parking procedures themselves:

• P(W) is then a finite probability measure on Finset(Z).

• Constructed by a sequence of “Bernoulli” laws on {Left, Right}.

Extension 1: Probabilization

The classical parking procedure and functions naturally lead to probabilistic questions:
see Konheim–Weiss, Flajolet–Poblete–Viola, Diaconis–Yan, ...

We can probabilize the parking procedures themselves:

• P(W) is then a finite probability measure on Finset(Z).

• Constructed by a sequence of “Bernoulli” laws on {Left, Right}.

Example (1). Fix a parameter p ∈ [0, 1], and decide to go Right with probability p and
Left with probability 1− p.

Extension 1: Probabilization

The classical parking procedure and functions naturally lead to probabilistic questions:
see Konheim–Weiss, Flajolet–Poblete–Viola, Diaconis–Yan, ...

We can probabilize the parking procedures themselves:

• P(W) is then a finite probability measure on Finset(Z).

• Constructed by a sequence of “Bernoulli” laws on {Left, Right}.

Example (1). Fix a parameter p ∈ [0, 1], and decide to go Right with probability p and
Left with probability 1− p.

The results for the deterministic case have natural extensions to this setting:
1. Encoding by binary forests.
2. Local procedures.
3. Enumeration via Pollak’s argument.

Extension 1: Probabilization

The classical parking procedure and functions naturally lead to probabilistic questions:
see Konheim–Weiss, Flajolet–Poblete–Viola, Diaconis–Yan, ...

We can probabilize the parking procedures themselves:

• P(W) is then a finite probability measure on Finset(Z).

• Constructed by a sequence of “Bernoulli” laws on {Left, Right}.

Example (1). Fix a parameter p ∈ [0, 1], and decide to go Right with probability p and
Left with probability 1− p.

The results for the deterministic case have natural extensions to this setting:
1. Encoding by binary forests.
2. Local procedures.
3. Enumeration via Pollak’s argument.

Example (2). Fix a parameter q ∈ [0,∞]. Suppose one wants to park at i ∈ [1, n]. Then
go Right with probability 1+q+···+qi−1

1+q+···+qn−1 (and thus Left with probability qi+···+qn−1

1+q+···+qn−1).
This determines a local procedure that is abelian.

This last procedure can be seen a series of random walks, and has many nice
properties. (cf. [Diaconis-Fulton, Tewari-N.])

Extension 2: Extra information

Let S be any set, and consider the alphabet A = Z× S. The set S represents some extra
information: in terms of cars, one might consider its brand or color.

Extension 2: Extra information

Let S be any set, and consider the alphabet A = Z× S. The set S represents some extra
information: in terms of cars, one might consider its brand or color.

All the constructions generalize easily to words in A∗:
• parking procedures.
• binary forest encoding (label the first tree with A).
• local procedures.
• Pollak’s argument.

Extension 2: Extra information

Let S be any set, and consider the alphabet A = Z× S. The set S represents some extra
information: in terms of cars, one might consider its brand or color.

All the constructions generalize easily to words in A∗:
• parking procedures.
• binary forest encoding (label the first tree with A).
• local procedures.
• Pollak’s argument.

One can also restrict the set of words to L ⊂ A∗: that is, the procedure need not be
defined everywhere.

Extension 2: Extra information

Let S be any set, and consider the alphabet A = Z× S. The set S represents some extra
information: in terms of cars, one might consider its brand or color.

All the constructions generalize easily to words in A∗:
• parking procedures.
• binary forest encoding (label the first tree with A).
• local procedures.
• Pollak’s argument.

One can also restrict the set of words to L ⊂ A∗: that is, the procedure need not be
defined everywhere.

Example. The procedure PCS is extended to words with S = {1, 2, ...} and distinct
letters. The comparison a < aj uses then the lexicographic order on A = Z× S.

This last example came up naturally in joint work with Vasu Tewari, and was the
starting point of the current project.

Extension 2: Extra information

Let S be any set, and consider the alphabet A = Z× S. The set S represents some extra
information: in terms of cars, one might consider its brand or color.

All the constructions generalize easily to words in A∗:
• parking procedures.
• binary forest encoding (label the first tree with A).
• local procedures.
• Pollak’s argument.

One can also restrict the set of words to L ⊂ A∗: that is, the procedure need not be
defined everywhere.

Example. The procedure PCS is extended to words with S = {1, 2, ...} and distinct
letters. The comparison a < aj uses then the lexicographic order on A = Z× S.

This last example came up naturally in joint work with Vasu Tewari, and was the
starting point of the current project.

MERCI DE VOTRE ATTENTION

	Classical Parking Functions
	Generalized Parking procedures
	Generalized Parking procedures
	The procedure \Spots_{CS}
	Encoding as binary forests

	Local parking procedures
	Enumeration

