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Definition (Hyperplane Arrangement)
A hyperplane arrangement is a finite set A of affine hyperplanes in R".

Definition (Region)
A region (or chamber) of an arrangement A is a connected component of

R™\ ] H.

HeA

The number of regions is denoted by r(.A).
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@ Any hyperplane in R” is of the form:

H:{(Xl""’X")ERn’alxl"‘"'-i-anxnzc}'

@ Defining polynomial of H:

Py =aixy+ -+ apx, — C.

@ Any region of A is an intersection of half-spaces of the form Py > 0
or Py < 0 for each H ¢ A.
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Characteristic polynomial

@ L 4 is the poset of non-empty intersections of hyperplanes in A
ordered by reverse inclusion.

@ The mobius function p : Ly — Z is defined as:
1, if x=R"
px) =

— > wu(y), otherwise.
y<x

@ The characteristic polynomial of A is defined as:

xa(t) = 3 p()edme).

x€L g
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1 t2 - 3t+2
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1
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Property of x.(t)

For any arrangement A in R", the characteristic polynomial is of the form

n

xa(t) = 3 (-1 g

i=0

where ¢; € Z>q for all 0 < i < n.
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Computing r(.A)

Theorem (Zaslavsky, 1975)

Let A be an arrangement in R". Then,

r(A) = (=1)"xa(-1)
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Examples

A La xA(t) r(A)
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Interpreting the coefficients of x 4(t)

n . .
o Let A be an arrangement in R” and x4(t) = > (—=1)"""¢it’.
i=0

n
@ By Zaslavsky's theorem, r(A) = Y ¢;.
i=0

When the regions of an arrangement are in bijection with a combinatorially
defined set, is there a statistic on the set that induces this breakup?
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Statistic

Definition (Statistic)

A statistic on a set of combinatorial objects O is a map f : O — Z>.

Definition (Distribution)

The distribution induced by a statistic f on O is the sequence given by
¢ = |f(i)| forall i€ Zso.

In particular, we have

01=> a.

i>0
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Braid arrange

o Ap={xi=x]1<i<j<n}

X] = Xp
@ Regions <> &,,. 123
213 132
n .
© xa,(t) = 2 s(n, i)t =
i=0 231 312
321
o Coefficients count permutations
Xp = X3

according to number of cycles.

Figure: A3z on x; + xo + x3 = 0.
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© Catalan arrangements and trees
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Catalan arrangement

Arrangement %, in R” defined as:

{Xi:Xj7 X,'=Xj+1|iaje[n]’ I#J}
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Regions of %,

Specifying a region is same as specifying a valid total order on

X1y Xpy X1+ 1,000, %, + 1.

XN<x1<x+l<xx+l<xp<xp+1l<xz3<xz3+1

represents a region of %;.

Valid: e x; < x;+1 0X,'<Xj:>X,'+1<Xj—|-1.
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Labeled binary trees

A binary tree with n nodes labeled distinctly using [n].
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Labeled binary trees

A binary tree with n nodes labeled distinctly using [n].
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Regions <> trees

X< x+l<xz3<x31<x3+1<x+1

Krishna Menon (CMI) A branch statistic for trees June 2022 19 /59



Extended Catalan arrangements

Arrangement ‘K,Sm) in R" defined as:

{xi=xj+k|ijelnl, i#j, kel0,m]}.

Regions: Valid total orders on

X1yeenXpyX1+ 1, .o xp+ 1,00, xa+m, .o, xy + m.
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Labeled (m + 1)-ary trees

An (m + 1)-ary tree with n nodes labeled distinctly using [n].
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Characteristic polynomial and region count

Theorem (Athanasiadis, 1996)

The characteristic polynomial of ‘K,Sm) is given by

X‘K,S'")(t) =t(t—mn—1)(t—mn—2)---(t —mn—(n—1)).

| \

Corollary

The number of regions of %,Sm) is given by

O ()

mn+1 n
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Aside: Fuss-Catalan numbers

Definition (n™ m-Catalan number)

The number of unlabeled (m + 1)-ary trees with n nodes given by

)

/\/\/\/\/\/\/\/\/\/\

Many other interpretations. Over 200 in the case m = 1!
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© Branches of trees
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Exponential structures: Graphs
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Connected components

o
®
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Graph structure on vertex set V

)

Partition of V: {B]_, BQ, RN Bk}
+

Connected graph structure on each B;.
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Exponential structures

e For any finite set V/, S(V) is the set of S-structures on V.

@ S5.(V)C S(V) is the set of “connected” S-structures on V.

S-structure on label set V

I
Partition of V: {By, By, ..., Bk}

_l’_

Connected S-structure on each B;.
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Counting structures

For any n, k > 0,

s(n) = Number of S-structures on [n]

sk(n) = Number of S-structures on [n] with k “components”

Theorem (Stanely, EC2)

We have the equality of formal power series:

Z sk(n)tk);—T = Zs(n));—':

n,k>0 ’ n>0
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Find a statistic on the labeled (m + 1)-ary trees with n nodes

whose distribution is given by the coefficients of x. ..
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Characteristic polynomial and region count

Recall

For any m,n > 1,
® X, m(t) =t(t—mn—1)(t—mn—2)---(t —mn—(n—1)).

(m+1)n

C r((g(m)) = mn+1( n )

Theorem (Stanley, 1995)

For any m > 1, we have

ZXﬁm)(f)X > (e

n>0 n>0

A\
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e C(m, n, k) = absolute value of the coefficient of t¥ in X (m (£).

@ We have

@ Show (m + 1)-ary tree structure is exponential, then C(m, n, k) is
number of trees with k components.
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Parts of a tree
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Parts of a tree: Trunk

Krishna Menon (CMI) A branch statistic for trees June 2022



Parts of a tree: Twigs

June 2022
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Parts of a tree: Branch nodes
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Parts of a tree: Branch nodes
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Parts of a tree: Branch nodes
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Example 2
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Example 2
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Labeled (m + 1)-ary trees

Definition

Let V be a finite set of positive integers. 7(™ (V) is the set of
(m + 1)-ary trees with |V/| nodes labeled distinctly using V.

Trees in 7(™ (V) break up into branches just as before.
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Connected (m + 1)-ary trees

Definition

Connected trees in 7(™(V) are those where
@ there is only one branch, or equivalently

@ last node on the trunk is the largest.
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Interpreting coefficients

C(m, n, k) is the number of trees in T(™)([n]) with k branches.

To prove:

@ The branches break a tree into connected trees.

@ A tree can be reconstructed from its branches.

Krishna Menon (CMI) A branch statistic for trees June 2022 41/59



Krishna Menon (CMI) statistic for trees June 2022 42 /59



42 /59

June 2022

o
4]
9
b=]
=
L
=
=]
a
=]
5]
B
)

Krishna Menon (CMI)



42 /59

June 2022

o
4]
9
b=]
=
L
=
=]
a
=]
5]
B
)

Krishna Menon (CMI)



Krishna Menon (CMI) statistic for trees June 2022 43 /59



Which first?
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Which first? The one which has the largest trunk label.
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Example 2
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Example 2
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@ The m-Catalan arrangement in R" is

™ = (i =x+k|ijen], i#], kelo,m}
@ The regions of &™) correspond to the trees in 7(™([n]).

@ The absolute value of the coefficient of t* in X(g(m)(t) counts the
trees in 7(™)([n]) with k branch nodes.
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Properties of coefficients

C(m, n, k) is the number of trees in 7™ ([n]) with k branches.

o C(m? n, k) S C(m+ 17 n, k)

@ C(m,n k) < C(m,n+1,k)
@ C(m,n k) > C(m,n, k+1)
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1. C(m,n k) < C(m+1,n, k)
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1. C(m,n k) < C(m+1,n, k)
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2. C(m,n, k) < C(m,n+1,k)

Krishna Menon (CMI) A branch statistic for trees June 2022 48 /59



2. C(m,n, k) < C(m,n+1,k)
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2. C(m,n, k) < C(m,n+1,k)
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More connected trees

There are more connected trees in T\™([n]) than disconnected trees.

@ More trees with only one branch than those with more than one.
n
e Equivalent to C(m,n,1) > > C(m,n, k).

k=2

e Implies C(m,n,1) > C(m,n,2) > C(m,n,3) > ---.
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More graphs are connected than disconnected for any vertex set V.

(2) &
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@ Other arrangements
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Stanley’s question

(26) [5-] Let
7, (1) =t" —ap 1 #" 4 (1) "ag.
For instance,
1) = -3t +L3t—1
7. (t) = -6 L1587 —1TH 4T
Y7 (t) = 17 —10t" 4+ 45t — 105¢% 4 120¢ — 51.
By Exercise 25(a), ap + a1 + -+ + ap_1 + 1 is the number of threshold graphs

on the vertex set [n]. Give a combinatorial interpretation of the numbers a; as
the number of threshold graphs with a certain property.

XT3

(
(

Iy

Figure: Exercise 5.26 of Stanley's notes.

Theorem (Deshpande, M., Singh)

The coefficient ay is the number of threshold graphs with k “odd anchors”.
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Deformations of the braid arrangement

Definition
Arrangements whose hyperplanes are parallel to some braid hyperplane,
i.e., of the form

x;i = xj + k for some k € Z.
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DEFORMATIONS OF THE BRAID ARRANGEMENT AND TREES

DEDICATED TO IRA GESSEL FOR HIS RETIREMENT

OLIVIER BERNARDI

ABSTRACT. We establish general counting formulas and bijections for deformations
of the braid arrangement. Precisely, we consider real hyperplane arrangements such
that all the hyperplanes are of the form x; — x; = s for some integer s. Classical
examples include the braid, Catalan, Shi, semiorder and Linial arrangements, as well
as graphical arrangements. We express the number of regions of any such arrange-
ment as a signed count of decorated plane trees. The characteristic and coboundary
polynomials of these arrangements also have simple expressions in terms of these
trees.

We then focus on certain “well-behaved” deformations of the braid arrangement
that we call transitive. This includes the Catalan, Shi, semiorder and Linial ar-
rangements, as well as many other arrangements appearing in the literature. For
any transitive deformation of the braid arrangement we establish a simple bijection
between regions of the arrangement and a set of labeled plane trees defined by local
conditions. This answers a question of Gessel.
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Find m such that A C ‘f,sm). Choose a tree to represent each region of A.

/
NN/
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Bernardi's idea

Find m such that A C ‘f,sm). Choose a tree to represent each region of A.
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Important deformations

o Catalan arrangement

‘Kn:{x;:xj, Xi:Xj+1|ia.j€[n]v ’75./}

@ Shi arrangement

Sn={xi=xj, xi=x;+1]1<i<j<n}

@ Linial arrangement

Lrn={xi=x+1]1<i<j<n}
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TEM

The characteristic polynomial of % is t3 — 3t% + 3t.
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Two-parameter Fuss-Catalan numbers

@ Raney numbers
1
n(m+1)+r n

e Counts r-tuples of (m + 1)-ary trees with total number of nodes n.

@ Setting r = 1 gives us Fuss-Catalan numbers.
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Two-parameter Fuss-Catalan numbers

Is there a family of arrangements with region numbers n! x A,(m, r)? If
so, what is a corresponding statistic on r-tuples of trees?

e Forr=1, (ﬁ,sm) and branch statistic.

o (Deshpande, M., Sarkar) For r =2,
Al = {(x;=0]ie[n}u{x=2"|ke[-mm],1<i<j<n}
and branch statistic on first tree of 2-tuple.

e Forr > 27
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Thank You!
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