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Definitions

Definition (Hyperplane Arrangement)

A hyperplane arrangement is a finite set A of affine hyperplanes in Rn.

Definition (Region)

A region (or chamber) of an arrangement A is a connected component of

Rn \
⋃
H∈A

H.

The number of regions is denoted by r(A).
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Regions

Any hyperplane in Rn is of the form:

H = {(x1, . . . , xn) ∈ Rn | a1x1 + · · ·+ anxn = c}.

Defining polynomial of H:

PH = a1x1 + · · ·+ anxn − c .

Any region of A is an intersection of half-spaces of the form PH > 0
or PH < 0 for each H ∈ A.
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Characteristic polynomial

LA is the poset of non-empty intersections of hyperplanes in A
ordered by reverse inclusion.

The möbius function µ : LA → Z is defined as:

µ(x) =


1, if x = Rn

−
∑
y<x

µ(y), otherwise.

The characteristic polynomial of A is defined as:

χA(t) =
∑
x∈LA

µ(x)tdim(x).
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Examples

A LA χA(t)
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Property of χA(t)

Theorem

For any arrangement A in Rn, the characteristic polynomial is of the form

χA(t) =
n∑

i=0

(−1)n−ici t
i

where ci ∈ Z≥0 for all 0 ≤ i ≤ n.
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Computing r(A)

Theorem (Zaslavsky, 1975)

Let A be an arrangement in Rn. Then,

r(A) = (−1)nχA(−1)

=
n∑

i=0

ci .
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Interpreting the coefficients of χA(t)

Let A be an arrangement in Rn and χA(t) =
n∑

i=0
(−1)n−ici t

i .

By Zaslavsky’s theorem, r(A) =
n∑

i=0
ci .

Question

When the regions of an arrangement are in bijection with a combinatorially
defined set, is there a statistic on the set that induces this breakup?
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Statistic

Definition (Statistic)

A statistic on a set of combinatorial objects O is a map f : O → Z≥0.

Definition (Distribution)

The distribution induced by a statistic f on O is the sequence given by

ci = |f −1(i)| for all i ∈ Z≥0.

In particular, we have

|O| =
∑
i≥0

ci .
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Braid arrangement

An = {xi = xj | 1 ≤ i < j ≤ n}.

Regions ↔ Sn.

χAn(t) =
n∑

i=0
s(n, i)t i .

Coefficients count permutations
according to number of cycles.

x1 = x2

x2 = x3

x1 = x3

213

231

321

312

132

123

Figure: A3 on x1 + x2 + x3 = 0.
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Catalan arrangement

Arrangement Cn in Rn defined as:

{xi = xj , xi = xj + 1 | i , j ∈ [n], i ̸= j}.
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Regions of Cn

Specifying a region is same as specifying a valid total order on

x1, . . . , xn, x1 + 1, . . . , xn + 1.

Example

x2 < x1 < x2 + 1 < x1 + 1 < x4 < x4 + 1 < x3 < x3 + 1

represents a region of C4.

Valid: • xi < xi + 1 • xi < xj ⇒ xi + 1 < xj + 1.
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Labeled binary trees

A binary tree with n nodes labeled distinctly using [n].
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Regions ↔ trees

x2 < x2 + 1 < x3 < x1 < x3 + 1 < x1 + 1

2 3

1
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3
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Extended Catalan arrangements

Arrangement C
(m)
n in Rn defined as:

{xi = xj + k | i , j ∈ [n], i ̸= j , k ∈ [0,m]}.

Regions: Valid total orders on

x1, . . . , xn, x1 + 1, . . . , xn + 1, . . . , x1 +m, . . . , xn +m.
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Labeled (m + 1)-ary trees

An (m + 1)-ary tree with n nodes labeled distinctly using [n].
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Characteristic polynomial and region count

Theorem (Athanasiadis, 1996)

The characteristic polynomial of C
(m)
n is given by

χ
C

(m)
n

(t) = t(t −mn − 1)(t −mn − 2) · · · (t −mn − (n − 1)).

Corollary

The number of regions of C
(m)
n is given by

r(C
(m)
n ) =

n!

mn + 1

(
(m + 1)n

n

)
.
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Aside: Fuss-Catalan numbers

Definition (nth m-Catalan number)

The number of unlabeled (m + 1)-ary trees with n nodes given by

1

mn + 1

(
(m + 1)n

n

)
.

Many other interpretations. Over 200 in the case m = 1!
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Exponential structures: Graphs
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Connected components
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Graph structure on vertex set V

↕
Partition of V : {B1,B2, . . . ,Bk}

+

Connected graph structure on each Bi .
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Exponential structures

For any finite set V , S(V ) is the set of S-structures on V .

Sc(V ) ⊆ S(V ) is the set of “connected” S-structures on V .

S-structure on label set V

↕

Partition of V : {B1,B2, . . . ,Bk}

+

Connected S-structure on each Bi .
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Counting structures

For any n, k ≥ 0,

s(n) = Number of S-structures on [n]

sk(n) = Number of S-structures on [n] with k “components”

Theorem (Stanely, EC2)

We have the equality of formal power series:

∑
n,k≥0

sk(n)t
k x

n

n!
=

∑
n≥0

s(n)
xn

n!

t

.
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Goal

Find a statistic on the labeled (m + 1)-ary trees with n nodes

whose distribution is given by the coefficients of χ
C

(m)
n

.
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Characteristic polynomial and region count

Recall

For any m, n ≥ 1,

χ
C

(m)
n

(t) = t(t −mn − 1)(t −mn − 2) · · · (t −mn − (n − 1)).

r(C
(m)
n ) = n!

mn+1

((m+1)n
n

)
.

Theorem (Stanley, 1995)

For any m ≥ 1, we have

∑
n≥0

χ
C

(m)
n

(t)
xn

n!
=

∑
n≥0

(−1)nr(C
(m)
n )

xn

n!

−t

.
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Upshot

C (m, n, k) = absolute value of the coefficient of tk in χ
C

(m)
n

(t).

We have

∑
n,k≥0

C (m, n, k)tk
xn

n!
=

∑
n≥0

r(C
(m)
n )

xn

n!

t

.

Show (m + 1)-ary tree structure is exponential, then C (m, n, k) is
number of trees with k components.
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Parts of a tree
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Parts of a tree: Trunk
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Parts of a tree: Twigs

6

234

5 81

7

Krishna Menon (CMI) A branch statistic for trees June 2022 35 / 59



Parts of a tree: Branch nodes
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Parts of a tree: Branches
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Example 2
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Labeled (m + 1)-ary trees

Definition

Let V be a finite set of positive integers. T (m)(V ) is the set of
(m + 1)-ary trees with |V | nodes labeled distinctly using V .

Trees in T (m)(V ) break up into branches just as before.
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Connected (m + 1)-ary trees

Definition

Connected trees in T (m)(V ) are those where

there is only one branch, or equivalently

last node on the trunk is the largest.
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Interpreting coefficients

Theorem

C (m, n, k) is the number of trees in T (m)([n]) with k branches.

To prove:

The branches break a tree into connected trees.

A tree can be reconstructed from its branches.
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Which first? The one which has the largest trunk label.
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Example 2
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Summary

The m-Catalan arrangement in Rn is

C
(m)
n := {xi = xj + k | i , j ∈ [n], i ̸= j , k ∈ [0,m]}.

The regions of C
(m)
n correspond to the trees in T (m)([n]).

The absolute value of the coefficient of tk in χ
C

(m)
n

(t) counts the

trees in T (m)([n]) with k branch nodes.
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Properties of coefficients

Recall

C (m, n, k) is the number of trees in T (m)([n]) with k branches.

Result
1 C (m, n, k) ≤ C (m + 1, n, k)

2 C (m, n, k) ≤ C (m, n + 1, k)

3 C (m, n, k) ≥ C (m, n, k + 1)
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2. C (m, n, k) ≤ C (m, n + 1, k)
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More connected trees

Theorem

There are more connected trees in T (m)([n]) than disconnected trees.

More trees with only one branch than those with more than one.

Equivalent to C (m, n, 1) ≥
n∑

k=2

C (m, n, k).

Implies C (m, n, 1) ≥ C (m, n, 2) ≥ C (m, n, 3) ≥ · · · .
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Motivation

Theorem

More graphs are connected than disconnected for any vertex set V .
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Stanley’s question

Figure: Exercise 5.26 of Stanley’s notes.

Theorem (Deshpande, M., Singh)

The coefficient ak is the number of threshold graphs with k “odd anchors”.
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Deformations of the braid arrangement

Definition

Arrangements whose hyperplanes are parallel to some braid hyperplane,
i.e., of the form

xi = xj + k for some k ∈ Z.
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Bernardi’s idea

Find m such that A ⊆ C
(m)
n . Choose a tree to represent each region of A.
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Important deformations

Catalan arrangement

Cn = {xi = xj , xi = xj + 1 | i , j ∈ [n], i ̸= j}.

Shi arrangement

Sn = {xi = xj , xi = xj + 1 | 1 ≤ i < j ≤ n}.

Linial arrangement

Ln = {xi = xj + 1 | 1 ≤ i < j ≤ n}.
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The characteristic polynomial of L3 is t3 − 3t2 + 3t.
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Two-parameter Fuss-Catalan numbers

Raney numbers

An(m, r) :=
r

n(m + 1) + r

(
n(m + 1) + r

n

)

Counts r -tuples of (m + 1)-ary trees with total number of nodes n.

Setting r = 1 gives us Fuss-Catalan numbers.
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Two-parameter Fuss-Catalan numbers

Question

Is there a family of arrangements with region numbers n!× An(m, r)? If
so, what is a corresponding statistic on r -tuples of trees?

For r = 1, C
(m)
n and branch statistic.

(Deshpande, M., Sarkar) For r = 2,

A(m)
n := {xi = 0 | i ∈ [n]} ∪ {xi = 2kxj | k ∈ [−m,m], 1 ≤ i < j ≤ n}

and branch statistic on first tree of 2-tuple.

For r > 2?
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Thank You!
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