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INTRODUCTION: WALKS IN THE QUARTER PLANE

The model: Choose a step set S ∈ {−1, 0, 1}2 \ {(0, 0)}.

Problem: Determine the number qn,i,j of paths in the positive
quadrant with steps in S from (1, 1) to (i, j) of length n.
Equivalently: Determine the generating function

Q(t, x, y) :=
∑
n≥0

∑
i,j≥1

qn,i,jtnxiyj.
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WALKS IN THE QUARTER PLANE BACKGROUND

Before 2010: Certain specific models considered and solved
[Kreweras, Gouyou-Beauchamps, Gessel]
Since then: 79 distinct non-trivial step sets identified
[Bousquet-Mélou, Mishna, 2010], systematic methods used to solve
many cases

Algebraic methods [Malyshev, Bousquet-Mélou, Mishna]
Asymptotic analyses [Denisov, Wachtel, Mishna, Rechnitzer]
Computer algebra [Bostan, Chyzak, Van Hoeij, Kauers, Pech]
Galois Theory [Dreyfus, Hardouin, Roques, Singer]
Analytic approach [Fayolle, Raschel, Kurkova, Bernardi]

All cases now characterised into complexity heirarchy
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COMPLEXITY HEIRARCHY

For a series (or a function) F(t), the following properties satisfy

Rational⇒ Algebraic⇒ D-finite⇒ D-Algebraic :

Rational: F(t) = P(t)
Q(t) for polynomials P(t) and Q(t).

Algebraic: P(F(t)) = 0 for some non-zero polynomial P(x).
D-finite: F(t) satisfies some non-trivial linear differential
equation. E.g.

t3F′′(t) + t2F′(t) + (t + 1)F(t)− 1 = 0

D-algebraic: F(t) satisfies some non-trivial algebraic
differential equation. E.g.

t2F′(t) + F′(t)F(t) + tF(t) = 0

For multivariate functions/series: Must be in the class (Rational,
Algebraic, etc.) as a function of each variable.
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QUADRANT WALKS

In total: 79 different non-trivial step sets S.

Complexity of generating function known precisely in each case:
Q(t, x, y) is

Algebraic in 4 cases:
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D-algebraic in 9 further cases:
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In remaining 47 cases, Q(t, x, y) is not D-algebraic.

This work: Same nature (in x) for 3/4-plane walks.
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In remaining 47 cases, Q(t, x, y) is not D-algebraic.
This work: Same nature (in x) for 3/4-plane walks.

Analytic solutions for walks with small steps in the three quarter plane Andrew Elvey Price



TALK OUTLINE

Part 1: Walks in 1/4-plane
Part 1a: Deriving functional equation
Part 1b: Conversion to analytic functional equation

Part 2: Walks in 3/4-plane
Part 2a: Deriving functional equation
Part 2b: Conversion to analytic functional equation
Part 2c: solution for walks starting on x-axis
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Part 1a: Walks in 1/4-plane
functional equation
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QUADRANT WALKS WITH SMALL STEPS

Concept: The walker dies when they touch an axis.
Quadrant walk: Walk from (1, 1) not touching an axis.
Dead walk: Walk from (1, 1) only touching an axis at the end.

(Quadrant walk+step) or empty walk = Quadrant walk or Dead walk

Generating function D(x, y; t) for dead walks splits as

D(x, y; t) = A(x; t) + B(y; t) + C(t).

Unknowns: Q(x, y; t),A(x; t),B(y; t),C(t).
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QUADRANT WALKS WITH SMALL STEPS

Concept: The walker dies when they touch an axis.
Quadrant walk: Walk from (1, 1) not touching an axis.
Dead walk: Walk from (1, 1) only touching an axis at the end.

(Quadrant walk+step) or empty walk = Quadrant walk or Dead walk

Generating function D(x, y; t) for dead walks splits as

D(x, y; t) = A(x; t) + B(y; t) + C(t).

Define the single-step polynomial: P(x, y) =
∑
(i,j)∈S

xiyj.

Q(x, y; t)tP(x, y) + xy = Q(x, y; t) + D(x, y; t).

Unknowns: Q(x, y; t),A(x; t),B(y; t),C(t).
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QUADRANT WALKS WITH SMALL STEPS

Concept: The walker dies when they touch an axis.
Quadrant walk: Walk from (1, 1) not touching an axis.
Dead walk: Walk from (1, 1) only touching an axis at the end.

(Quadrant walk+step) or empty walk = Quadrant walk or Dead walk

Generating function D(x, y; t) for dead walks splits as

D(x, y; t) = A(x; t) + B(y; t) + C(t).

Define the single-step polynomial: P(x, y) =
∑
(i,j)∈S

xiyj.

Q(x, y; t)tP(x, y) + xy = Q(x, y; t) + D(x, y; t).

To simplify, write Kernel K(x, y; t) = 1− tP(x, y).
To solve:

xy = K(x, y; t)Q(x, y; t) + A(x; t) + B(y; t) + C(t).

Unknowns: Q(x, y; t),A(x; t),B(y; t),C(t).
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Part 1b: Algebraic functional
equation→ analytic functional

equation
Originally from [Fayolle,Ianogorodski,Malyshev,1999] and [Raschel, 2010]

Used in [Fayolle, Raschel, 2010], [Kurkova, Raschel, 2012], [Bernardi,
Bousquet-Mélou, Raschel, 2021], [Dreyfus,Hardouin,Roques,Singer, 2020],

etc.
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QUADRANT WALKS SOLUTION

To solve: (for A, B, C and hence Q)

xy = K(x, y; t)Q(x, y; t) + A(x; t) + B(y; t) + C(t).

Solution idea:
Step 1: Fix t < 1/9 and define K = {(x, y) : K(x, y; t) = 0}. Then for
(x, y) ∈ K, and |x|, |y| < 1, we have

A(x) + B(y) + C = xy.

Classic theorem: K is a surface with genus 1 (usually), so is
homeomorphic to some C/(πZ + πτZ), where τ ∈ iR.
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QUADRANT WALKS SOLUTION

To solve: (for A, B, C and hence Q)

xy = K(x, y; t)Q(x, y; t) + A(x; t) + B(y; t) + C(t).

Solution idea:
Step 1: Fix t < 1/9 and define K = {(x, y) : K(x, y; t) = 0}. Then for
(x, y) ∈ K, and |x|, |y| < 1, we have

A(x) + B(y) + C = xy.

Classic theorem: K is a surface with genus 1 (usually), so is
homeomorphic to some C/(πZ + πτZ), where τ ∈ iR.
Step 2: Parametrise K using functions X,Y : C→ C ∪∞,
satisfying for some γ ∈ iR:

X(z) = X(z + π) = X(z + πτ) = X(−γ − z)
Y(z) = Y(z + π) = Y(z + πτ) = Y(γ − z)

To solve: (for A, B and C)

A(X(z)) + B(Y(z)) + C = X(z)Y(z) when |X(z)|, |Y(z)| < 1.
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MORE ABOUT X(z) AND Y(z)

X(z) and Y(z) are determined directly by the step set S.
By the definitions, X and Y satisfy∑

(i,j)∈S

X(z)iY(z)j = t−1 (that is, K(X(z),Y(z)) = 0),

X(z) = X(z + π) = X(z + πτ) = X(−γ − z),
Y(z) = Y(z + π) = Y(z + πτ) = Y(γ − z).

They can be written as

X(z) = xc
ϑ(z− α, τ)ϑ(z + γ + α, τ)

ϑ(z− δ, τ)ϑ(z + γ + δ, τ)

= xc

∞∏
k=−∞

sin(z− α+ kπτ) sin(z + γ + α+ kπτ)

sin(z− δ + kπτ) sin(z + γ + δ + kπτ)
,

Y(z) = yc
ϑ(z− β, τ)ϑ(z + γ + β, τ)

ϑ(z− ε, τ)ϑ(z + γ + ε, τ)

= yc

∞∏
k=−∞

sin(z− β + kπτ) sin(z− γ + β + kπτ)

sin(z− ε+ kπτ) sin(z− γ + ε+ kπτ)
.
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MORE ABOUT X(z) AND Y(z)

X(z) and Y(z) are determined directly by the step set S.
By the definitions, X and Y satisfy∑

(i,j)∈S

X(z)iY(z)j = t−1 (that is, K(X(z),Y(z)) = 0),

X(z) = X(z + π) = X(z + πτ) = X(−γ − z),
Y(z) = Y(z + π) = Y(z + πτ) = Y(γ − z).

They can be written as

X(z) = x0
℘(z + γ

2 , π, πτ) + a
℘(z + γ

2 , π, πτ) + d
,

Y(z) = y0
℘(z− γ

2 , π, πτ) + b
℘(z− γ

2 , π, πτ) + e
.

Note: there are 8 unknowns (τ , γ, x0, y0, a, b, d and e).
Corresponds to: Dimension of space L/R where L is the space of
polynomials

∑
i,j∈{−1,0,1}

ai,jxiyj.
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MORE ABOUT X(z)

π−π
−γ

2

−πτ+γ
2

πτ−γ
2

πτ − γ
2

1 < |X(z)|

δ

πτ−γ−δ

−πτ + δ

−γ − δ

1 < |X(z)|

|X(z)| < 1

|X(z)| < 1

|X(z)| < 1

πτ − γ − α

πτ + α

−γ − α

α

−πτ + β

Poles of
X(z)

Roots of
X(z)
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MORE ABOUT Y(z)

|Y (z)| < 1

π−π

γ
2

−πτ−γ
2

−πτ + γ
2

πτ+γ
2

ε

−πτ + γ − ε

πτ + ε

γ − ε

|Y (z)| < 1

|Y (z)| < 1

1 < |Y (z)|

1 < |Y (z)|

γ − β

β

πτ + β

Poles of
Y (z)

Roots of
Y (z)

−πτ + γ − β
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MORE ABOUT X(z) AND Y(z)

Ω0

Ω1

Ω2

Ω3

Ω4

Ω−1

Ω−2

Ω−3

Ω−4

0 π−π

γ
2

−γ
2

−πτ−γ
2

−πτ
2

−πτ+γ
2

−πτ + γ
2

−πτ

πτ+γ
2

πτ
2
πτ−γ
2

πτ − γ
2

πτ

|X(z)|, |Y (z)| < 1

|Y (z)| < 1 ≤ |X(z)|

|X(z)|, |Y (z)| < 1

1 ≤ |X(z)|, |Y (z)|

|X(z)|, |Y (z)| < 1

|Y (z)| < 1 ≤ |X(z)|

|X(z)| < 1 ≤ |Y (z)|

|X(z)| < 1 ≤ |Y (z)|

1 ≤ |X(z)|, |Y (z)|
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QUADRANT WALKS SOLUTION

Recall: We substituted x→ X(z) and y→ Y(z) into the equation

xy = Q(x, y)K(x, y) + A(x) + B(y) + C,

for quadrant walks. Only for |X(z)|, |Y(z)| < 1. e.g., for z ∈ Ω0.
To solve: (for A, B and C)

A(X(z)) + B(Y(z)) + C = X(z)Y(z) for z ∈ Ω0.
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QUADRANT WALKS SOLUTION

Recall: We substituted x→ X(z) and y→ Y(z) into the equation

xy = Q(x, y)K(x, y) + A(x) + B(y) + C,

for quadrant walks. Only for |X(z)|, |Y(z)| < 1. e.g., for z ∈ Ω0.
To solve: (for A, B and C)

A(X(z)) + B(Y(z)) + C = X(z)Y(z) for z ∈ Ω0.

Step 3: Define

Ã(z) = A(X(z)), for z ∈ Ω0 ∪ Ω−1,

B̃(z) = B(X(z)), for z ∈ Ω0 ∪ Ω1.

To solve:
Ã(z) + B̃(z) + C = X(z)Y(z),

given that

Ã(z) = Ã(z + π) = Ã(−γ − z),

B̃(z) = B̃(z + π) = B̃(γ − z).
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QUADRANT WALKS SOLUTION

To solve:
Ã(z) + B̃(z) + C = X(z)Y(z),

given that

Ã(z) = Ã(z + π) = Ã(−γ − z),

B̃(z) = B̃(z + π) = B̃(γ − z).
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QUADRANT WALKS SOLUTION

To solve:
Ã(z) + B̃(z) + C = X(z)Y(z),

given that

Ã(z) = Ã(z + π) = Ã(−γ − z),

B̃(z) = B̃(z + π) = B̃(γ − z).

Other details needed:
Ã and B̃ are holomorphic
Ã and B̃ extend to meromorphic functions on C
Ã has roots at roots α and −γ − α of X(z)
B̃ has roots at roots β and γ − β of Y(z)
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QUADRANT WALKS SOLUTION

To solve:
Ã(z) + B̃(z) + C = X(z)Y(z),

given that

Ã(z) = Ã(z + π) = Ã(−γ − z),

B̃(z) = B̃(z + π) = B̃(γ − z).

Using this method:
Exact integral expression solution for Q(x, y; t) [Raschel, 2010]
Nature of Q(x, y; t) as a function of x and y
In D-algebraic cases: prove Q(x, y; t) is D-algebraic in all
variables [Bernardi, Bouquet-Mélou, Raschel, 2021]

To do:
Determine nature of Q(x, y; t) as a function of t in all cases
Determine asymptotic form of solution
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Part 2: 3/4-plane

(0, 0)
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3/4-PLANE WALKS PREVIOUS RESEARCH

(0, 0)

Death red line: Negative axes

Now only 74 distinct interesting cases.
Nature (Algebraic/D-finite/D-algebraic) previously determined in 14
cases. Always the same as in quarter plane.

Analytic solutions for walks with small steps in the three quarter plane Andrew Elvey Price



WALKS IN THE 3/4-PLANE: PREVIOUS SOLVED CASES

Not D-finiteD-finite

[Budd 20]

[B-M 16]

[B-M, W 21]
[E.P. 20]

[R,T 19]

[D,T 20]

[B-M 21+]

[Bousquet-Mélou 16],[Raschel, Trotignon 19], [Budd 20], [E.P., 20], [Dreyfus,

Trotignon, 21], [Bousquet-Mélou, Wallner 21], [Bousquet-Mélou 21+] .

This work: remaining 60 cases still have the same nature (w.r.t. x)
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PREVIEW: ANALYTIC FUNCTIONAL EQUATION

Equation to solve in 1/4-plane:

Ã(z) + B̃(z) = X(z)Y(z),

given that

Ã(z) = Ã(z + π) = Ã(−γ − z),

B̃(z) = B̃(z + π) = B̃(γ − z).

Equation to solve in 3/4-plane:

Â(z) + B̂(z) = X(z)Y(z),

given that

Â(z) = Â(z + π) = Â(πτ − γ − z),

B̂(z) = B̂(z + π) = B̂(−πτ + γ − z).
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Part 2a: Walks in 3/4-plane
functional equation

(0, 0)

Analytic solutions for walks with small steps in the three quarter plane Andrew Elvey Price



THREE QUADRANT CONE WALKS WITH SMALL STEPS

Concept: The walker dies when they touch the red line.
Cone walk: Walk from (1, 1) not touching red line.
Dead walk: Walk from (1, 1) only touching red line at the end.

(Cone walk + step) or empty walk = Cone walk or Dead walk

Generating function D(x, y; t) for dead walks splits as

D(x, y; t) = A(x; t) + B(y; t) + C(t).

(0, 0) (0, 0)

Unknowns: C(x, y; t),A(x; t),B(y; t),C(t).
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THREE QUADRANT CONE WALKS WITH SMALL STEPS

Concept: The walker dies when they touch the red line.
Cone walk: Walk from (1, 1) not touching red line.
Dead walk: Walk from (1, 1) only touching red line at the end.

(Cone walk + step) or empty walk = Cone walk or Dead walk

Generating function D(x, y; t) for dead walks splits as

D(x, y; t) = A(x; t) + B(y; t) + C(t).

Define the single-step polynomial: P(x, y) =
∑
(i,j)∈S

xiyj.

C(x, y; t)tP(x, y) + xy = C(x, y; t) + D(x, y; t).

To simplify, write Kernel K(x, y; t) = 1− tP(x, y).
To solve:

xy = K(x, y; t)C(x, y; t) + A(x; t) + B(y; t) + C(t).

Unknowns: C(x, y; t),A(x; t),B(y; t),C(t).
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Part 2b: Algebraic functional
equation→ analytic functional

equation
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3 QUADRANT CONE WALKS SOLUTION

To solve: (for A, B, C and hence C)

xy = K(x, y; t)C(x, y; t) + A(x; t) + B(y; t) + C(t).

Solution idea:
Step 1: Fix t < 1/9 and define X(z) and Y(z) as before (so
K(X(z),Y(z)) = 0).
Step 2: Try to substitute x→ X(z) and y→ Y(z).
Step 3: Panic because C(X(z),Y(z); t) never converges (it contains
positive and negative powers of both X(z) and Y(z)).
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3 QUADRANT CONE WALKS SOLUTION FIX

Step 1: split the 3/4 plane into quadrants Q−1, Q0 and Q1.

Q0

Q−1

Q1

Definition: Generating functions Q−1(x, y−1; t), Q0(x, y; t),
Q1(x−1, y; t) count walks ending in Q−1, Q0, Q1 respectively.

C(x, y; t) = Q−1(x, y−1; t) + Q0(x, y; t) + Q1(x−1, y; t).
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3 QUADRANT CONE WALKS SOLUTION

Old equation to solve: (for A, B, C and hence Q)

xy = K(x, y)C(x, y) + A(x−1) + B(y−1) + C.
splits into new equations to solve:

−K(x, y)Q−1

(
x,

1
y

)
= B

(
1
y

)
+ H1(x) +

1
y

H2(x)

for |x| < 1 < |y|

−K(x, y)Q0(x, y) = −xy + C − V1(y)− xV2(y)− H1(x)−
1
y

H2(x)

for |x|, |y| < 1

−K(x, y)Q1

(
1
x
, y
)

= A
(

1
x

)
+ V1(y) + xV2(y).

for |y| < 1 < |x|
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3 QUADRANT CONE WALKS SOLUTION

Old equation to solve: (for A, B, C and hence Q)

xy = K(x, y)C(x, y) + A(x−1) + B(y−1) + C.
splits into new equations to solve:

−K(x, y)Q−1

(
x,

1
y

)
= B

(
1
y

)
+ H1(x) +

1
y

H2(x) for |x| < 1 < |y|

−K(x, y)Q0(x, y) = −xy + C − V1(y)− xV2(y)− H1(x)−
1
y

H2(x) for |x|, |y| < 1

−K(x, y)Q1

(
1
x
, y
)

= A
(

1
x

)
+ V1(y) + xV2(y). for |y| < 1 < |x|

These do converge in useful regions.
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3 QUADRANT CONE WALKS SOLUTION

Old equation to solve: (for A, B, C and hence Q)

xy = K(x, y)C(x, y) + A(x−1) + B(y−1) + C.
splits into new equations to solve:

−K(x, y)Q−1

(
x,

1
y

)
= B

(
1
y

)
+ H1(x) +

1
y

H2(x) for |x| < 1 < |y|

−K(x, y)Q0(x, y) = −xy + C − V1(y)− xV2(y)− H1(x)−
1
y

H2(x) for |x|, |y| < 1

−K(x, y)Q1

(
1
x
, y
)

= A
(

1
x

)
+ V1(y) + xV2(y). for |y| < 1 < |x|

These do converge in useful regions.
Next step: Substitute x→ X(z) and y→ Y(z) in each equation:

0 = B

(
1

Y(z)

)
+ H1(X(z)) +

1

Y(z)
H2(X(z)) for |X(z)| < 1 < |Y(z)|

0 = −X(z)Y(z) + C − V1(Y(z))− X(z)V2(Y(z))− H1(X(z))−
1

Y(z)
H2(X(z)) for |X(z)|, |Y(z)| < 1

0 = A

(
1

X(z)

)
+ V1(Y(z)) + X(z)V2(Y(z)). for |Y(z)| < 1 < |X(z)|
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RECALL: MORE ABOUT X(z)

π−π
−γ

2

−πτ+γ
2

πτ−γ
2

πτ − γ
2

1 < |X(z)|

δ

πτ−γ−δ

−πτ + δ

−γ − δ

1 < |X(z)|

|X(z)| < 1

|X(z)| < 1

|X(z)| < 1

πτ − γ − α

πτ + α

−γ − α

α

−πτ + β

Poles of
X(z)

Roots of
X(z)
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RECALL: MORE ABOUT Y(z)

|Y (z)| < 1

π−π

γ
2

−πτ−γ
2

−πτ + γ
2

πτ+γ
2

ε

−πτ + γ − ε

πτ + ε

γ − ε

|Y (z)| < 1

|Y (z)| < 1

1 < |Y (z)|

1 < |Y (z)|

γ − β

β

πτ + β

Poles of
Y (z)

Roots of
Y (z)

−πτ + γ − β
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RECALL: MORE ABOUT X(z) AND Y(z)

Ω0

Ω1

Ω2

Ω3

Ω4

Ω−1

Ω−2

Ω−3

Ω−4

0 π−π

γ
2

−γ
2

−πτ−γ
2

−πτ
2

−πτ+γ
2

−πτ + γ
2

−πτ

πτ+γ
2

πτ
2
πτ−γ
2

πτ − γ
2

πτ

|X(z)|, |Y (z)| < 1

|Y (z)| < 1 ≤ |X(z)|

|X(z)|, |Y (z)| < 1

1 ≤ |X(z)|, |Y (z)|

|X(z)|, |Y (z)| < 1

|Y (z)| < 1 ≤ |X(z)|

|X(z)| < 1 ≤ |Y (z)|

|X(z)| < 1 ≤ |Y (z)|

1 ≤ |X(z)|, |Y (z)|
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3 QUADRANT CONE WALKS SOLUTION

Equations to solve:

−K(x, y)Q−1

(
x,

1
y

)
= B

(
1
y

)
+ H1(x) +

1
y

H2(x)

for |x| < 1 < |y|

−K(x, y)Q0(x, y) = −xy + C − V1(y)− xV2(y)− H1(x)−
1
y

H2(x)

for |x|, |y| < 1

−K(x, y)Q1

(
1
x
, y
)

= A
(

1
x

)
+ V1(y) + xV2(y).

for |y| < 1 < |x|
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3 QUADRANT CONE WALKS SOLUTION

Equations to solve:

−K(x, y)Q−1

(
x,

1
y

)
= B

(
1
y

)
+ H1(x) +

1
y

H2(x) for |x| < 1 < |y|

−K(x, y)Q0(x, y) = −xy + C − V1(y)− xV2(y)− H1(x)−
1
y

H2(x) for |x|, |y| < 1

−K(x, y)Q1

(
1
x
, y
)

= A
(

1
x

)
+ V1(y) + xV2(y). for |y| < 1 < |x|

Define:

B̂(z) := B

(
1

Y(z)

)
, for z ∈ Ω−2 ∪ Ω−1,

Ĥ(z) := H1(X(z)) +
1

Y(z)
H2(X(z)), for z ∈ Ω−1 ∪ Ω0,

V̂(z) := V1(Y(z)) + X(z)V2(Y(z)), for z ∈ Ω0 ∪ Ω1,

Â(z) := A

(
1

X(z)

)
, for z ∈ Ω1 ∪ Ω2.

Then

0 = B̂(z) + Ĥ(z), for z ∈ Ω−1,

0 = C − X(z)Y(z)− Ĥ(z)− V̂(z), for z ∈ Ω0,

0 = Â(z) + V̂(z), for z ∈ Ω1.
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3 QUADRANT CONE WALKS SOLUTION

Define:

B̂(z) := B
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Y(z)
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(
1
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)
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Then

0 = B̂(z) + Ĥ(z), for z ∈ Ω−1,
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3 QUADRANT CONE WALKS SOLUTION

Define:

B̂(z) := B

(
1

Y(z)

)
, for z ∈ Ω−2 ∪ Ω−1,

Ĥ(z) := H1(X(z)) +
1

Y(z)
H2(X(z)), for z ∈ Ω−1 ∪ Ω0,

V̂(z) := V1(Y(z)) + X(z)V2(Y(z)), for z ∈ Ω0 ∪ Ω1,

Â(z) := A

(
1

X(z)

)
, for z ∈ Ω1 ∪ Ω2.

Then

0 = B̂(z) + Ĥ(z), for z ∈ Ω−1,

0 = C − X(z)Y(z)− Ĥ(z)− V̂(z), for z ∈ Ω0,

0 = Â(z) + V̂(z), for z ∈ Ω1.

To solve: (Sum of equations on right)

0 = C − X(z)Y(z) + Â(z) + B̂(z).

From definitions:

Â(z) = Â(z + π) = Â(πτ − γ − z),

B̂(z) = B̂(z + π) = B̂(−πτ + γ − z).
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3 QUADRANT CONE WALKS SOLUTION

To solve:
0 = C − X(z)Y(z) + Â(z) + B̂(z).

From definitions:

Â(z) = Â(z + π) = Â(πτ − γ − z),

B̂(z) = B̂(z + π) = B̂(−πτ + γ − z).
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3 QUADRANT CONE WALKS SOLUTION

To solve:
0 = C − X(z)Y(z) + Â(z) + B̂(z).

From definitions:

Â(z) = Â(z + π) = Â(πτ − γ − z),

B̂(z) = B̂(z + π) = B̂(−πτ + γ − z).

Other details needed:
Â is holomorphic on Ω0 ∪ Ω1 ∪ Ω2
B̂ is holomorphic on Ω0 ∪ Ω−1 ∪ Ω−2
Â and B̂ are meromorphic on C
Â has roots at poles δ and πτ − γ − δ of X(z)
B̂ has roots at poles ε and −πτ + γ − ε of Y(z)
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3 QUADRANT CONE WALKS SOLUTION

To solve:
0 = C − X(z)Y(z) + Â(z) + B̂(z).

From definitions:

Â(z) = Â(z + π) = Â(πτ − γ − z),

B̂(z) = B̂(z + π) = B̂(−πτ + γ − z).

Conclusion: As in quarter plane case we get:
Exact integral expression solution for Q(x, y; t)
Nature of Q(x, y; t) as a function of x and y
In D-algebraic cases: proof Q(x, y; t) is D-algebraic in all
variables
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Part 2c: Walks in 3/4-plane walks
starting on x-axis

(0, 0)
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WALKS STARTING AT (p, 0)

To solve:
X(z)p = C + Âp(z) + B̂p(z).

where

Âp(z) = Âp(z + π) = Âp(πτ − γ − z),

B̂p(z) = B̂p(z + π) = B̂p(−πτ + γ − z).
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WALKS STARTING AT (p, 0)

To solve:
X(z)p = C + Âp(z) + B̂p(z).

where

Âp(z) = Âp(z + π) = Âp(πτ − γ − z),

B̂p(z) = B̂p(z + π) = B̂p(−πτ + γ − z).

and
Âp is holomorphic on Ω0 ∪ Ω1 ∪ Ω2
B̂p is holomorphic on Ω0 ∪ Ω−1 ∪ Ω−2
Âp and B̂p are meromorphic on C
Ãp has roots at poles δ and πτ − γ − δ of X(z)
B̃p has roots at poles ε and −πτ + γ − ε of Y(z)
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WALKS STARTING AT (p, 0)

To solve:
X(z)p = C + Âp(z) + B̂p(z).

where

Âp(z) = Âp(z + π) = Âp(πτ − γ − z),

B̂p(z) = B̂p(z + π) = B̂p(−πτ + γ − z).
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WALKS STARTING AT (p, 0)

To solve:
X(z)p = C + Âp(z) + B̂p(z).

where

Âp(z) = Âp(z + π) = Âp(πτ − γ − z),

B̂p(z) = B̂p(z + π) = B̂p(−πτ + γ − z).

Rearranging equation:

B̂p(z) = X(z)p − C − Âp(z),

which is fixed under z→ πτ − γ − z. So,

B̂p(z) = B̂p(z + π) = B̂p(2πτ − 2γ + z)
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WALKS STARTING AT (p, 0)

To solve:
X(z)p = C + Âp(z) + B̂p(z).

where

Âp(z) = Âp(z + π) = Âp(πτ − γ − z),

B̂p(z) = B̂p(z + π) = B̂p(−πτ + γ − z).

Rearranging equation:

B̂p(z) = X(z)p − C − Âp(z),

which is fixed under z→ πτ − γ − z. So,

B̂p(z) = B̂p(z + π) = B̂p(2πτ − 2γ + z)

→ Exact solution for B̂p→ exact solution for C(x, y; t)
Surprising result: Relation between walks starting at (1, 0) and
walks starting at (p, 0).
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WALKS STARTING AT (1, 0) SOLUTION FOR B1(z)

For B1(z):

B1(z) = b
ϑ(z− ε, 2τ − 2 γπ )ϑ(z + πτ + ε− γ, 2τ − 2 γπ )

ϑ(z− δ, 2τ − 2 γπ )ϑ(z + πτ + δ − γ, 2τ − 2 γπ )

= b
∞∏

j=−∞

sin(z− ε+ 2k(πτ − γ)) sin(z + ε+ (2k + 1)(πτ − γ))

sin(z− δ + 2k(πτ − γ)) sin(z + δ + (2k + 1)(πτ − γ))

Then Bp(z) is a degree p polynomial of B1(z)

Analytic solutions for walks with small steps in the three quarter plane Andrew Elvey Price



WALKS STARTING AT (p, 0) SOLUTION.

Definition: Ap
( 1

x ; t
)

is the generating function for killed 3/4-plane
walks from (p, 0) to the non-positive x-axis.
Theorem part A: For each p, there is a degree p polynomial
Hp(a; t) ∈ aZ[[t]][a] satisfying

Ap

(
1
x

; t
)

= xp − Hp

(
x− A1

(
1
x

; t
)

; t
)
.

Hp is uniquely determined by the fact that Ap
( 1

x ; t
)
∈ Z[[1

x , t]].

Theorem part B: the generating function Bp

(
1
y ; t
)

for killed walks
from (p, 0) to the negative y-axis is

Bp

(
1
y

; t
)

= Hp

(
B1

(
1
y

; t
)

; t
)
.

→ surprising result even for p = 2
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3/4 WALKS FROM (2, 0) TO (−1, 0).

Surprising result: For any step set S and any length n, Exactly half
of the killed walks in the 3/4-plane from (2, 0) to (−1, 0) touch the
green ray {(1, y) : y ≤ 0}.

(0, 0)

Bijection??
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