Generalised Kontsevich graphs: topological recursion and r-spin intersection numbers

Séverin Charbonnier
j.w. Raphaël Belliard, Bertrand Eynard and Elba Garcia-Failde
math.CO/2105.08035

Groupe de Travail Combinatoire Énumérative et Algébrique
LaBRI
31st May 2021
Witten’s conjecture (’90): the generating series of intersection numbers of ψ-classes on the moduli spaces of stable curves

$$\langle \tau_{d_1} \cdots \tau_{d_n} \rangle_g = \int_{\overline{M}_{g,n}} \psi_{d_1} \cdots \psi_{d_n}$$

is a tau-function of the KdV hierarchy (infinite set of non-linear differential equations).

Kontsevich (’92): generating functions of $\langle \tau_{d_1} \cdots \tau_{d_n} \rangle_g = \text{volumes of the moduli spaces of Riemann surfaces} = \text{sums over weighted fatgraphs (Kontsevich’s graphs)}$.

Kontsevich (’92): the enumeration of the fatgraphs is solved by (what was later called) topological recursion on the Airy curve.

Dijkgraaf–Verlinde–Verlinde (’91): topological recursion on the Airy curve \Leftrightarrow Virasoro constraints of the KdV hierarchy.

Theorem (Witten’s conjecture/Kontsevich’s theorem)

The generating series of intersection numbers of ψ-classes on the moduli spaces of stable curves is a tau-function of the KdV hierarchy.
Question: what is the complete picture if we consider Witten’s conjecture about r-spin classes and the r-KdV hierarchy ('93)?

Combinatorial side? Topological recursion side?
Plan

1. Combinatorial model: definitions and preliminary identities
 - Definition of the model
 - Origin of the model: matrix models
 - Combinatorial identities

2. Computing the generating series: Tutte’s equation and Topological Recursion
 - Tutte’s recursion for GKG
 - Topological recursion

3. Application: r-spin intersection numbers satisfy Topological Recursion
Table of contents

1. Combinatorial model: definitions and preliminary identities
 - Definition of the model
 - Origin of the model: matrix models
 - Combinatorial identities

2. Computing the generating series: Tutte’s equation and Topological Recursion
 - Tutte’s recursion for GKG
 - Topological recursion

3. Application: r-spin intersection numbers satisfy Topological Recursion
Definition (Map)

- A **map** is a graph G endowed with a cyclic order on the edges incident to each vertex.
- **Genus** g of a connected map:

$$\#\text{vertices} - \#\text{edges} + \#\text{faces} = 2 - 2g$$

Examples

- **#faces = 1**
 - $g = 1$
- **#faces = 3**
 - $g = 0$
Generalised Kontsevich Graphs

Let $r \geq 2$.

Definition (GKG)

A **Generalised Kontsevich Graph** (GKG) is a connected map which can carry 3 types of vertices:

- Black vertices, of degree $3 \leq d \leq r + 1$;
- Labelled white vertices (from 1 to n), of degree $d \geq 1$, with the constraints:
 1. each face is adjacent to at most one white vertex;
 2. if a white vertex and its half-edges are removed, the remaining half-edges – that where attached to the erased set – belong to the same face (**star constraint**);
- Square vertices, of degree $d \geq 1$.
Decorated GKG

Faces adjacent to white vertices of a GKG are called **marked faces**, the other faces are **unmarked faces**.

Definition (Decorated Generalised Kontsevich Graphs)

Let $N \in \mathbb{N}$, $\lambda_1, \ldots, \lambda_N \in \mathbb{C}$, and let G be a GKG with n white vertices. G is a **decorated Generalised Kontsevich Graph** (decorated GKG) if:

- the marked faces around the j^{th} white vertex carry the complex variables $z_{j,1}, \ldots, z_{j,k_j}$;
- each unmarked face carries a parameter belonging to $\{\lambda_1, \ldots, \lambda_N\}$;
- each square vertex carries the complex variable u.

![Diagram of a decorated GKG](image)
Sets of interest

We are interested in the weighted enumeration of graphs of the following set:

Definition (ciliated GKG)

\(G \in \mathcal{W}_{g,n}^{[r]}(z_1, \ldots, z_n) \) is the set of decorated GKG s.t.:
- \(G \) is a decorated GKG of genus \(g \) and \(n \) white vertices, without square vertex;
- the white vertices are of degree 1, the variable of the face around the \(j^{th} \) one is \(z_j \).

\[
\mathcal{W}_{g,n}^{[r]}(z_1, \ldots, z_n) = \left\{ \begin{array}{c}
\end{array} \right.
\]

Square ciliated GKG:
\[\mathcal{U}_{g,n}^{[r]}(u; z_1, \ldots, z_n) = \]

Multiciliated GKG:
\[S_{g,n}^{[r]}(u; [z_{1,1}, z_{1,2}], z_2, \ldots, z_n) = \]
Weight of a decorated GKG

Potential: \(V(z) = \sum_{j=1}^{r+1} v_j z^j \)

<table>
<thead>
<tr>
<th>Object</th>
<th>Picture</th>
<th>Notation</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge</td>
<td></td>
<td>(P(a_1, a_2))</td>
<td>(\frac{a_1-a_2}{V'(a_1)-V'(a_2)})</td>
</tr>
<tr>
<td>White vertex</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
| Black vertex | ![Black vertex](image) | \(\mathcal{V}_k(a_1, \ldots, a_k) \) | \(\mathcal{V}_1(a_1) = -V'(a_1) \)
| | | | \(\mathcal{V}_{k+1}(a_1, \ldots, a_{k+1}) = \frac{\mathcal{V}_k(a_1, \ldots, a_k) - \mathcal{V}_k(a_1, \ldots, a_{k-1}, a_{k+1})}{a_k-a_{k+1}} \) |
| Square vertex| ![Square vertex](image) | \(Q_k(u; a_1, \ldots, a_k) \) | \(\prod_{j=1}^{k} \frac{1}{u-a_j} \) |

The weight of \(G \), a decorated GKG, is the product of the local weights:

\[
w(G) = \prod_{\text{edges}} P(a,b) \prod_{\text{black vertices}} \mathcal{V}_k(a_1, \ldots, a_k) \prod_{\text{square vertices}} Q_m(u; b_1, \ldots, b_m)
\]

Remarks:

- due to the constraint on the black vertices, \(\mathcal{V}_1(a_1) \) and \(\mathcal{V}_2(a_1, a_2) \) are irrelevant;
- \(\mathcal{V}_k(a_1, \ldots, a_k) = \text{Res}_{u=\infty} Q_k(u; a_1, \ldots, a_k) V'(u)\,du \)
Generating series

Let G be a GKG. The **degree** of G is $\text{deg } G = (r + 1)(2g - 2 + \#\text{faces})$.

We define the main generating series:

$$W_{g,n}^{[r]}(z_1, \ldots, z_n) = \sum_{G \in W_{g,n}^{[r]}(z_1, \ldots, z_n)} w(G) \alpha^{-\text{deg } G} = \sum_{G \in W_{g,n}^{[r]}(z_1, \ldots, z_n)} w(G) \alpha^{-\text{deg } G} =$$

and the auxiliary ones:

$$U_{g,n}^{[r]}(u; z_1, \ldots, z_n) =$$

$$S_{g,n}^{[r]}(u; [z_1, 1, z_1, 2], z_2, \ldots, z_n) =$$

Remarks:

- They are well-defined formal power series in $\alpha^{-(r+1)}$: for a given degree, there is a finite number of graphs in each set.
- The automorphism factor of the graphs of those sets is 1.
- Those generating series are also called **correlation functions**.
Goal: compute $W_{g,n}^r(z_1, \ldots, z_n)$ for all g,n.

Questions:

- **Why** this model, those weights, those generating functions?
- **How** to compute?
Origin of the model: inspiration from matrix models

Feynman graphs of the hermitian matrix model with external field:

\[Z = \int_{H_N + \lambda} dM \ e^{-N \text{Tr} \left(\frac{M^3}{3} - M \lambda^2 \right)} \]

where \(\lambda = \text{diag}(\lambda_1, \ldots, \lambda_N) \).

Natural generalisation: study the Feynman graphs of:

\[Z[r] = \int_{H_N + \lambda} dM \ e^{-N \text{Tr}(V(M) - M V'(\lambda))}, \quad V(z) = \sum_{j=1}^{r+1} v_j \frac{z^j}{j} \]

Carry out \(M \leftarrow \tilde{M} + \lambda \) to erase the linear term:

\[Z[r] = C(\lambda) \int_{H_N} d\tilde{M} e^{-N \left(\frac{1}{2} \sum_{i,j=1}^{N} \tilde{M}_{i,j} \tilde{M}_{j,i} \frac{1}{P(\lambda_i, \lambda_j)} - \sum_{\ell=3}^{r+1} \frac{1}{\ell} \sum_{i_1, \ldots, i_\ell=1}^{N} \tilde{M}_{i_1, i_2} \tilde{M}_{i_2, i_3} \cdots \tilde{M}_{i_\ell, i_1} v_\ell(\lambda_{i_1}, \ldots, \lambda_{i_\ell}) \right)} \]

Those correlation functions are the inspiration for the ciliated GKG:

\[\langle \tilde{M}_{i_1, i_1} \cdots \tilde{M}_{i_n, i_n} \rangle = \frac{1}{Z[r]} \int_{H_N + \lambda} dM \tilde{M}_{i_1, i_1} \cdots \tilde{M}_{i_n, i_n} e^{-N \text{Tr}(V(M) - M V'(\lambda))} \]
Combinatorial identities - 1

Notation: \(\mathcal{R}(f) = \text{Res}_{u=\infty} du \, V'(u)f(u) \).

Lemma (ciliated and square ciliated)

\[
\frac{V''(z_1)}{V'''(z_1)} W_{g,n}^{[r]}(z_1, \ldots, z_n) = -\mathcal{R} \left((u - z_1) \frac{z_1}{a_1} \frac{1}{a_k} \right) - \delta_{g,0} \delta_{n,1} \frac{N}{V'''(z_1)}
\]

Proof:

\[
\mathcal{R} \left((u - z_1) \frac{z_1}{a_1} \frac{1}{a_k} \right) = \frac{1}{V'''(z_1)} \mathcal{R} \left(z_1 \frac{a_1}{a_k} \right) = \frac{1}{V'''(z_1)} \mathcal{R} \left(z_1 \frac{a_1}{a_k} \right)
\]

Cancellation!

\[
\mathcal{R} \left((u - z_1) \frac{z_1}{a_1} \right) = \frac{1}{V'''(z_1)} \mathcal{R} \left(z_1 \frac{a_1}{a_1} \right) = -\frac{1}{V'''(z_1)} \frac{z_1}{a_1}
\]

\[
\mathcal{R} \left((u - z_1) \frac{z_1}{a_1} \right) = \frac{1}{V'''(z_1)} \mathcal{R} \left(z_1 \frac{z_1}{a_1} \right) = -\frac{V'(z_1)}{V'''(z_1)} \frac{z_1}{a_1}
\]
Lemma (square ciliated and multiciliated)

\[
\frac{1}{\alpha^{r+1}} \frac{P(z_{1,1}, z_{1,2})}{V'(z_{1,1}) - V''(z_{1,2})} \times
\]

\[
(V''(z_{1,1}) - V''(z_{1,2}))
\]

Proof: Insert an edge $z_{1,1}|z_{1,2}$ at all possible places around the first marked face:

Then use:

\[
\mathcal{V}_{k+1}(a_1, \ldots, a_{k+1}) = \frac{\mathcal{V}_k(a_1, a_3, \ldots, a_{k+1}) - \mathcal{V}_k(a_2, \ldots, a_{k+1})}{a_1 - a_2}
\]

to write the sum as a telescopic sum. Only the boundary terms remain!
Lemma (unciliated and ciliated)

Proof:

\[
\frac{1}{V''(z_j)} \frac{\partial}{\partial z_j} Z_j \bigg|_{a_1} = \frac{1}{V''(z_j)} \frac{\partial}{\partial z_j} Z_j \bigg|_{a_1}
\]
Table of contents

1 Combinatorial model: definitions and preliminary identities
 • Definition of the model
 • Origin of the model: matrix models
 • Combinatorial identities

2 Computing the generating series: Tutte’s equation and Topological Recursion
 • Tutte’s recursion for GKG
 • Topological recursion

3 Application: r-spin intersection numbers satisfy Topological Recursion
Goal: compute $W^{[r]}_{g,n}(z_1, \ldots, z_n)$.

We use the – more convenient – auxiliary generating series $U^{[r]}_{g,n}$ to derive an equation “à la Tutte”.

(Combinatorial identity 1 allows to recover $W^{[r]}_{g,n}$ from $U^{[r]}_{g,n}$.)

$U^{[r]}_{g,n}$ is a formal power series in α:

$$U^{[r]}_{g,n} = \sum_{d \geq 2g - 2 + n} \alpha^{-(r+1)d} U^{[r],d}_{g,n}$$

where $(U^{[r],d}_{g,n})_{d,g,n}$ is a 3-index family of rational functions, s.t.

$$g \geq 0, \quad n \geq 1, \quad d \geq 2g - 2 + n.$$

Tutte’s equation is a recursive relation on $2g + n + d$ between the $U^{[r],d}_{g,n}$’s.
Notation:

\[z_1 z_2 \ldots z_n = u g, I \]

\[I = \{z_2, \ldots, z_n\} \]

Procedure:

1. Start from a square ciliated GKG

2. Erase the first cilium

3. Add a white vertex on the edge on the left

4. Cut the edge and look at the map we get
Tutte’s equation

For \((g, n) \neq (0, 1)\), (the disc is special), there are 4 cases:

(a) \[
\begin{align*}
\lambda_j \\
\end{align*}
\]

(b) \[
\begin{align*}
l_m = I \setminus \{z_m\}
\end{align*}
\]

(c) \[
\begin{align*}
h + h' &= g \\
J \sqcup J' &= I
\end{align*}
\]

(d) \[
\begin{align*}
g - 1, l
\end{align*}
\]
Tutte’s equation – case (a)

\[
\begin{align*}
\frac{g, I_{\lambda_j}}{u - z_1} g, I & = \frac{P(z_1, z_1)}{u - z_1} \\
& = \frac{P(z_1, z_1)}{u - z_1} \frac{1}{P(z_1, \lambda_j)}
\end{align*}
\]

Combinatorial identity 2

\[
\sum_{j=1}^{\infty} \frac{V''(z_1)}{V''(\lambda_j)} \left(V''(z_1) - V''(\lambda_j) \right)
\]

This case gives the contribution:

\[
\text{case (a)} = \alpha^{-(r+1)} \frac{1}{u - z_1} \sum_{j=1}^{\infty} \frac{V''(z_1) U_{g,n}^{[r]}(u; z_1, I) - V''(\lambda_j) U_{g,n}^{[r]}(u; \lambda_j, I)}{V'(z_1) - V(\lambda_j)}
\]
Tutte’s equation – case (b)

This case gives the contribution:

case (b) = \frac{\alpha^{-(r+1)}}{u - z_1} \sum_{m=2}^{n} \frac{1}{V''(z_1)} \frac{1}{V''(z_m)} \frac{\partial}{\partial z_m} \frac{V''(z_1) U_{g,n-1}^{[r]}(u; z_1, l_m) - V''(z_m) U_{g,n-1}^{[r]}(u; z_m, l_m)}{V'(z_1) - V(z_m)}
Tutte’s equation – cases (c) and (d)

\[
\begin{align*}
\text{(c) } &\quad \frac{1}{u - z_1} \sum_{h + h' = g, J \sqcup J' = l} W_{h,1}^{[r]}(z_1, J) U_{h',1}^{[r]}(u; z_1, J') \\
\text{(d) } &\quad \frac{1}{u - z_1} \frac{1}{\alpha^{r+1}} U_{g-1,n+1}^{[r]}(u; z_1, z_1, l)
\end{align*}
\]

Tutte’s equation for GKG

For \((g, n) \neq (0, 1)\):

\[
U_{g,n}^{[r]}(u; z_1, l) = \frac{\alpha^{-(r+1)}}{u - z_1} \left(\frac{1}{V''(z_1)} \sum_{j=1}^{N} V''(z_1)U_{g,n}^{[r]}(u; z_1, l) - V''(\lambda_j)U_{g,n}^{[r]}(u; \lambda_j, l) \right)
\]

\[
+ \frac{1}{V''(z_1)} \sum_{m=2}^{n} \frac{1}{V''(z_m)} \frac{\partial}{\partial z_m} \left(V''(z_1)U_{g,n-1}^{[r]}(u; z_1, l) - V''(z_m)U_{g,n-1}^{[r]}(u; z_m, l) \right)
\]

\[
+ \sum_{h+h'=g \atop J \sqcup J'=l} W_{h,1,J}(z_1, J) U_{h',1,J'}^{[r]}(u; z_1, J')
\]

\[+ U_{g-1,n+1}^{[r]}(u; z_1, z_1, l) \]
Topological Recursion

Topological Recursion is a **procedure** developed by Chekhov–Eynard–Orantin ('07), see Vincent Delecroix’s talks.

\[
\text{Input} \quad \xrightarrow{\text{recursion on } 2g - 2 + n} \quad \text{Output}
\]

Spectral Curve \(\mathcal{S} \) \quad \omega_{g,n} \quad Differentials

Various applications:

- Combinatorics (Alexandrov–Mironov–Morozov ’05)
- Gromov-Witten Invariants/Mirror symmetry (Bouchard–Klemm–Mariño–Pasquetti ’08)
- Knot invariants (Borot–Eynard ’12)
- Cohomological Field Theory (Dunin-Barkowski–Orantin–Shadrin–Spitz ’12)
- Integrable hierarchies (Eynard–Garcia-Failde ’19, Marchal–Orantin ’19)
- Volumes of the moduli spaces (Eynard–Orantin ’07)
- ...
More in detail...

Spectral curve:

$$\mathcal{S} = (\Sigma, \Sigma_0, x, y, \omega_{0,2})$$

where:

- Σ, Σ_0 are complex curves;
- $x, y : \Sigma \to \Sigma_0$ are coverings (x is branched);
- $\omega_{0,2} \in H^0(\Sigma^2, K_{\Sigma}^{\otimes 2})$ is a symmetric bi-differential on Σ.

We note $\omega_{0,1}(z) = y(z)dx(z)$.

Recursion:

For $2g - 2 + n \geq 1$, the n-differential $\omega_{g,n}$ is given by:

$$\omega_{g,n}(z_1, I) = \operatorname{Res}_{z=a} K_a(z_1, z) \left(\omega_{g-1,n+1}(z, \tau_a(z), I) + \sum_{h+h'=g, \exists J, J' \subseteq I} \omega_{h,1+J}(z, J) \omega_{h',1+J'}(\tau_a(z), J') \right)$$

where $I = \{z_2, \ldots, z_n\}$, τ_a is the deck transformation around the branchpoint a, and K_a is the recursion’s kernel.
Spectral curve for GKG

Definition

Let \(Q \) be the unique polynomial of degree \(r \) s.t.

\[
Q(\zeta) = V'(\zeta + \alpha^{-(r+1)} \sum_{j=1}^{N} \frac{1}{Q'(\xi_j)(\zeta - \xi_j)}) + O(1/\zeta)
\]

where \(Q(\xi_j) = V'(\lambda_j) \).

The coefficients of \(Q \) are formal power series in \(\alpha \).

Definition (Spectral curve for GKG)

\[
\mathcal{S} = (\mathbb{P}^1, \mathbb{P}^1, x, y, \omega^{[r]}_{0,2})
\]

with

- \(x(\zeta) = Q(\zeta) \)
- \(y(\zeta) = \zeta + \alpha^{-(r+1)} \sum_{j=1}^{N} \frac{1}{Q'(\xi_j)(\zeta - \xi_j)} \), \(\omega^{[r]}_{0,1}(\zeta) = \alpha^{r+1}y(\zeta)d\zeta(\zeta) \)
- \(\omega^{[r]}_{0,2}(\zeta_1, \zeta_2) = \frac{d\zeta_1 \otimes d\zeta_2}{(\zeta_1 - \zeta_2)^2} \)
Topological Recursion for GKG

Definition (Differentials for GKG)
Let \(\zeta_j \) be the implicit function of \(z_j \) s.t.:
\[
Q(\zeta_j) = V'(z_j), \quad \zeta_j \xrightarrow{z_j \to \infty} z_j + O(1).
\]

For \(2g - 2 + n \geq 1 \), define the \(n \) differentials:
\[
\omega^{[r]}_{g,n}(\zeta_1, \ldots, \zeta_n) = W^{[r]}_{g,n}(z_1, \ldots, z_n) \, dx(\zeta_1) \ldots dx(\zeta_n).
\]

Theorem (BCEG-F '21)
The \(\omega^{[r]}_{g,n}(\zeta_1, \ldots, \zeta_n) \)'s satisfy topological recursion for the GKG spectral curve.

\(\Rightarrow \) we have a way to compute \(W^{[r]}_{g,n} \) by recursion on \(2g - 2 + n \).
The proof is rather technical and starts from Tutte’s equation. It requires that the branchpoints of the spectral curve are simple: \(Q'(\zeta) \) has simple roots (the potential and the \(\lambda \)'s are then called generic).
Table of contents

1. Combinatorial model: definitions and preliminary identities
 - Definition of the model
 - Origin of the model: matrix models
 - Combinatorial identities

2. Computing the generating series: Tutte’s equation and Topological Recursion
 - Tutte’s recursion for GKG
 - Topological recursion

3. Application: r-spin intersection numbers satisfy Topological Recursion
Witten’s class

A. Generalised Kontsevich graphs:
Choose \(V(z) = \frac{z^{r+1}}{r+1}, \lambda_1 = \cdots = \lambda_N = \infty. \)

B. \(r \)-Airy Curve:

\[
\mathcal{J}[r] = (\Sigma, \Sigma_0, x(z), y(z), \omega_{0,2}(z_1, z_2)) = \left(\mathbb{P}^1, \mathbb{P}^1, z^r, z, \frac{dz_1 \otimes dz_2}{(z_1 - z_2)^2} \right)
\]

C. Witten’s class / \(r \)-spin class: \(c_W \in H^\bullet(\overline{M}_{g,n}, \mathbb{Q}). \)

Intersection numbers:

\[
\langle \tau_{d_1,a_1} \cdots \tau_{d_n,a_n} \rangle_g = \int_{\overline{M}_{g,n}} c_W(a_1, \ldots, a_n) \psi_1^{d_1} \cdots \psi_n^{d_n}
\]

\(c_W(a_1, \ldots, a_n) \) is defined from the moduli space of \(r \)-spin structures \(\overline{M}_{1/r}^{1/r}_{g;a_1,\ldots,a_n} \) (think of the points of \(\overline{M}_{1/r}^{1/r}_{g;a_1,\ldots,a_n} \) as \(r \)th roots of canonical bundles over curves).

D. \(r \)-KdV hierarchy / \(r \)th Gelfand-Dikii hierarchy, obtained as a reduction of the KdV hierarchy.
r-spin intersection numbers satisfy topological recursion

B ↔ A:
Main theorem + (Bouchard–Eynard ’13): for $V(z) = \frac{z^{r+1}}{r+1}$ and $\lambda_j = \infty$, the $\omega_{g,n}^{[r]}$’s satisfy higher topological recursion with the r-Airy curve

A ↔ D:
The partition function of the matrix model

$$Z[r] = \int_{H_N} e^{-N \text{Tr} \left(\frac{M^{r+1}}{r+1} - M \lambda^r \right)}$$

is a tau-function of the r-KdV hierarchy satisfying the string equation (Adler–van Moerbeke ’92)

D ↔ C:
The generating series of r-spin intersection numbers is a tau-function of the r-KdV hierarchy satisfying the string equation (conjecture: Witten ’93, theorem: Faber–Shadrin–Zvonkine ’10).

Corollary (B ↔ A ↔ D ↔ C (Dunin-Barkowski–Norbury–Orantin–Polopitov–Shadrin ’19))

The r-spin intersection numbers are computed via topological recursion with the r-Airy curve.
Conclusion

Also in the paper:

- The combinatorial model offers a wide range of spectral curves by tuning the potential V and the λ’s;
- In the proof of topological recursion for the model, we obtain a “combinatorial interpretation” for loop equations (coming from matrix models).

Work in progress (to appear soonish):

- Proof of a conjecture by Borot–Garcia-Failde: fully simple maps satisfy topological recursion, symplectic invariance of topological recursion;
- Study the intersection of Witten’s class by varying the spectral curve (DOSS formula).
Thank you for your attention!
Examples of GKG in various sets

- \(\lambda_j \in \mathcal{W}_{0,1}^{[r]}(z_1) \) with degree \(0 \)
- \(\lambda_j \in \mathcal{W}_{0,2}^{[r]}(z_1, z_2) \) with degree \(r + 1 \)
- \(\lambda_j \in \mathcal{W}_{1,2}^{[r]}(z_1, z_2) \) with degree \(2(r + 1) \)

- \(z_1 \in U_{0,1}^{[r]}(u; z_1) \) with degree \(-(r + 1) \)
- \(\lambda_i \in U_{0,1}^{[r]}(u; z_1) \) with degree \(r + 1 \)
- \(z_1 \in S_{0,3}^{[r]}(u; [z_{1,1}, z_{1,2}], z_2, z_3) \) with degree \(r + 1 \)
Weights of black vertices

\[V_1(a_1) = -V'(a_1) \]
\[V_2(a_1, a_2) = -\frac{V'(a_1) - V'(a_2)}{a_1 - a_2} = -\frac{1}{P(a_1, a_2)} \]
\[V_3(a_1, a_2, a_3) = -\frac{V'(a_1)}{(a_1 - a_2)(a_1 - a_3)} - \frac{V'(a_2)}{(a_2 - a_1)(a_2 - a_3)} - \frac{V'(a_3)}{(a_3 - a_1)(a_3 - a_2)} \]
\[V_k(a_1, \ldots, a_k) = -\sum_{j=1}^{k} \frac{V'(a_j)}{\prod_{i \neq j}(a_j - a_i)} \]

Example: \(V(z) = z^3/3 \)

\[V_3(z_1, z_2, z_3) = -1, \quad V_k(a_1, \ldots, a_k) = 0, \quad k \geq 4. \]

Example: \(V(z) = z^4/4 \)

\[V_3(z_1, z_2, z_3) = -(z_1 + z_2 + z_3), \quad V_4(z_1, \ldots, z_4) = -1, \quad V_k(a_1, \ldots, a_k) = 0, \quad k \geq 5. \]
Tutte’s equation for the disc

\[U_{r}^{[r]}(u; z_1) = \frac{\alpha^{-(r+1)}}{u - z_1} \frac{1}{V''(z_1)} \sum_{j=1}^{N} \frac{V''(z_1) U_{0,1}^{[r]}(u; z_1) - V''(\lambda_j) U_{0,1}^{[r]}(u; \lambda_j)}{V'(z_1) - V'(\lambda_j)} \]

\[+ \frac{\alpha^{-(r+1)}}{u - z_1} W_{0,1}^{[r]}(z_1) U_{0,1}^{[r]}(u; z_1) + \frac{\alpha^{r+1}}{(u - z_1)V''(z_1)} \]
Disc and cylinder generating series

\[
y(\zeta) = \zeta + \alpha^{-(r+1)} \sum_{j=1}^{N} \frac{1}{Q'(\xi_j)(\zeta - \xi_j)} = z + \alpha^{-(r+1)} \left(W_{0,1}^{[r]}(z) + \sum_{j=1}^{N} \frac{1}{V'(z) - V'(\lambda_j)} \right)
\]

\[
\omega_{0,2}^{[r]}(\zeta_1, \zeta_2) = \frac{d\zeta_1 d\zeta_2}{(\zeta_1 - \zeta_2)^2} = \left(W_{0,2}^{[r]}(z_1, z_2) + \frac{1}{(V'(z_1) - V'(z_2))^2} \right) V''(z_1)dz_1 V''(z_2)dz_2
\]